Electronic Supplementary information for

Efficient and rapid linker optimization with heterodimeric coiled coils improves the response of fluorescent biosensors comprising antibody and protein M

Kana Sasamoto,^a Takanobu Yasuda,^b Bo Zhu,^b Hiroshi Ueda^b and Tetsuya Kitaguchi*^b

^aSchool of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan

^bLaboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan

*Correspondence E-mail: kitaguc.t.aa@m.titech.ac.jp

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

Supplementary Table

Table S1. The DNA sequence of the primers used for the construction of PM-E4s.

Primer name	Nucleotide Sequence (5'-3')
Bsu_SMA_E4back	AAACGTGCGGCCTCAATGGCTGAAATCGCTGCAC
Bsu_SGGGSMA_E4back	AAACGTGCGGCCTCAGGTGGAGGGAGCATGGCTGAAATCGCTGCAC
Bsu_SGS_E4back	AAACGTGCGGCCTCAGGGTCTGAAATCGCTGCAC
Bsu_SGGGSGG_E4back	AAACGTGCGGCCTCAGGTGGAGGGGGGGGGGGGGGGGGG
E4-2_Bottom	ACTTTAGCGACGTGACCTCTTTCTTTAACGTCGGAATCTTTTTCTTTATCG
E4-3_Top	CCTTAGAAAAAGAAATAGCAGCGTTGGAAAAGGAAATCGCAGCATTGGAG
Eag_E4For_v2	CCTTTAGCGTCGTAACCTCTTCATTATTGCCGGCGTGAGCTCGT

Table S2. Amino acid sequences of peptides for antigen and K4s before dye modification.

Peptide name	Sequence	M.W.
BGP-C7	NH2-RRFYGPV-COOH	894.0
С-К4	NH2-C KIAALKEKIAALKEKIAALKEKIAALKE-COOH	3136.9
C-G3S-K4	NH2-C GGGS KIAALKEKIAALKEKIAALKEKIAALKE-COOH	3395.1
C-G3SG3S-K4	NH2-C GGGSGGGS KIAALKEKIAALKEKIAALKEKIAALKE-CONH2	3637.0

A Anti-BGP Fab

		T-K4 linker			
		(GGGS) ₀	(GGGS) ₁	(GGGS) ₂	
ker	SMA	0.79 ± 0.017	0.81 ± 0.0087	0.62 ± 0.017	
· lin	SGS	0.72 ± 0.020	0.35 ± 0.018	0.38 ± 0.020	
I-E4	SGGGSMA	0.43 ± 0.017	0.23 ± 0.0079	0.16 ± 0.0014	
Νd	SGGGSGG	0.84 ± 0.031	0.23 ± 0.0073	0.28 ± 0.027	

B Anti-CS IgG

		T-K4 linker				
		(GGGS) ₀	(GGGS) ₁	(GGGS) ₂		
ƙer	SMA	0.79 ± 0.0041	0.72 ± 0.027	0.58 ± 0.017		
link	SGS	0.48 ± 0.0093	0.54 ± 0.024	0.53 ± 0.023		
-Е4	SGGGSMA	0.38 ± 0.012	0.49 ± 0.0091	0.50 ± 0.019		
РΖ	SGGGSGG	0.41 ± 0.0079	0.44 ± 0.0044	0.45 ± 0.023		

C Anti-TS IgG

		T-K4 linker			
		(GGGS)₀	(GGGS)1	(GGGS) ₂	
٤er	SMA	0.79 ± 0.028	0.91 ± 0.038	0.81 ± 0.014	
in	SGS	0.58 ± 0.012	0.62 ± 0.0070	0.69 ± 0.023	
<u>-Е4</u>	SGGGSMA	0.55 ± 0.031	0.54 ± 0.028	0.59 ± 0.017	
РΖ	SGGGSGG	0.53 ± 0.016	0.55 ± 0.012	0.56 ± 0.013	

D Anti-Digoxin IgG

		T-K4 linker			
		(GGGS) ₀	(GGGS)1	(GGGS) ₂	
ker	SMA	1.2 ± 0.076	1.1 ± 0.074	1.0 ± 0.033	
int	SGS	0.94 ± 0.051	1.0 ± 0.022	1.0 ± 0.0058	
I-E4	SGGGSMA	0.80 ± 0.012	0.82 ± 0.020	0.92 ± 0.015	
РΝ	SGGGSGG	0.77 ± 0.070	0.97 ± 0.014	0.92 ± 0.027	

Table S3. Quenching levels of 12 combinations of CQ-probe using TAMRA with different linkers mixed with anti-BGP Fab (50 nM), anti-CS IgG (5.0 nM), anti-TS IgG (5.0 nM), and anti-digoxin IgG (10 nM). CQ-probe concentration in all experiments was 1.0 nM. The data represent means \pm standard deviation (n = 3).

A BGP-C7			
PM-E4 linker / T-K4 linker	+ Anti-BGP Fab (30 nM)	+ BGP-C7 (3.0 μM)	Response
SGGGSMA/ (GGGS) ₂	0.25 ± 0.011	0.95 ± 0.030	3.7
SGGGSGG/(GGGS)1	0.20 ± 0.017	0.88 ± 0.033	4.3
B CS			
PM-E4 linker / T-K4 linker	+ Anti-CS IgG (5.0 nM)	+ CS (1.0 mM)	Response
SGGGSMA/ (GGGS) ₀	0.41 ± 0.021	1.1 ± 0.062	2.6
SGGGSGG/(GGGS)0	0.42 ± 0.015	$\textbf{0.90} \pm \textbf{0.0059}$	2.1
C TS			
PM-E4 linker / T-K4 linker	+ Anti-TS IgG (5.0 nM)	+ TS (1.0 μM)	Response
SGGGSMA/ (GGGS) ₀	0.55 ± 0.013	1.1 ± 0.016	1.9
SGGGSMA/ (GGGS) ₁	0.53 ± 0.0088	1.0 ± 0.018	1.9
SGGGSGG/(GGGS)0	0.55 ± 0.013	$0.99 {\pm} 0.065$	1.8
SGGGSGG/(GGGS)1	0.52 ± 0.025	0.93 ± 0.0035	1.8
D Digoxin			
PM-E4 linker / T-K4 linker	+ Anti-digoxin IgG (10 nM)	+ Digoxin (1.0 μM)	Response
SGGGSMA/ (GGGS) ₀	0.80 ± 0.012	0.93 ± 0.028	1.2
SGGGSGG/(GGGS)0	0.77 ± 0.043	1.0 ± 0.045	1.3

Table S4. Fluorescence responses for selected T-K4 labeled CQ-probes/antibody complex against BGP-C7, cortisol, testosterone, and digoxin. The data represent the means \pm standard deviation (n = 3).

A BGP-C7

	Max response (-fold)	ΔF.I. (%)	ΔF.I. cq.probe / ΔF.I. PM Q-probe	EC50 (nM)	LOD (nM)
CQ-probe (TAMRA)	4.6	360	2.6	140	18
PM Q-probe (TAMRA)	2.4	140	2.0	85	27
CQ-probe (R6G)	8.9	790	10	520	11
PM Q-probe (R6G)	1.6	61	13	260	15

B CS

	Max response (-fold)	ΔF.I. (%)	Δ F.I. cq.probe / Δ F.I. PM Q-probe	EC50 (nM)	LOD (nM)
CQ-probe (TAMRA)	2.5	150	1 5	3.9	0.25
PM Q-probe (TAMRA)	2.0	100	1.5	7.1	0.34
CQ-probe (R6G)	4.7	370	9.7	210	1.6
PM Q-probe (R6G)	1.4	38		170	15

C TS

	Max response (-fold)	ΔF.I. (%)	ΔF.I. cq.probe / ΔF.I. PM Q-probe	EC50 (nM)	LOD (nM)
CQ-probe (TAMRA)	2.1	110	1.0	8.2	2.0
PM Q-probe (TAMRA)	1.9	94	1.2	11	4.3
CQ-probe (R6G)	1.8	84	1.3	5.3	1.7
PM Q-probe (R6G)	1.4	40		4.4	1.2

D Digoxin

	Max response (-fold)	ΔF.I. (%)	Δ F.I. cq.probe / Δ F.I. PM Q-probe	EC50 (nM)	LOD (nM)
CQ-probe (TAMRA)	*	*	*	*	*
PM Q-probe (TAMRA)	*	*		*	*
CQ-probe (R6G)	1.6	59	1.0	3.7	0.19
PM Q-probe (R6G)	1.3	32	1.0	5.4	0.43

* not calculated due to R2 values less than 0.96

Table S5. Characterization of CQ-probe and PM Q-probe complexes with antibodies against BGP-C7,

 cortisol, testosterone, and digoxin. An average of three independent measurements is shown.

A Anti-BGP Fab

		R-K4 linker			
		(GGGS)₀	(GGGS)1	(GGGS) ₂	
ker	SMA	0.28 ± 0.013	0.39 ± 0.017	0.19 ± 0.020	
lin	SGS	0.21 ± 0.013	0.41 ± 0.0098	0.12 ± 0.0049	
I-E4	SGGGSMA	0.13 ± 0.0087	0.14 ± 0.0065	0.14 ± 0.012	
ΡN	SGGGSGG	0.12 ± 0.010	0.12 ± 0.0063	0.12 ± 0.0040	

B Anti-CS IgG

		R-K4 linker		
		(GGGS) ₀	(GGGS) ₁	(GGGS) ₂
PM-E4 linker	SMA	0.32 ± 0.0037	0.44 ± 0.0062	0.24 ± 0.0097
	SGS	0.27 ± 0.0048	0.35 ± 0.0069	0.18 ± 0.0064
	SGGGSMA	0.30 ± 0.0065	0.25 ± 0.011	0.28 ± 0.019
	SGGGSGG	0.30 ± 0.0038	0.22 ± 0.0029	0.21 ± 0.0048

C Anti-TS IgG

		R-K4 linker		
		(GGGS) ₀	(GGGS) ₁	(GGGS) ₂
I-E4 linker	SMA	0.86 ± 0.0046	0.94 ± 0.012	0.93 ± 0.0078
	SGS	0.75 ± 0.011	0.83 ± 0.019	0.74 ± 0.0068
	SGGGSMA	0.77 ± 0.0087	0.68 ± 0.024	0.85 ± 0.0047
ΡN	SGGGSGG	0.70 ± 0.0062	0.70 ± 0.013	0.77 ± 0.014

D Anti-Digoxin IgG

		R-K4 linker		
		(GGGS) ₀	(GGGS) ₁	(GGGS) ₂
I-E4 linker	SMA	0.99 ± 0.021	1.0 ± 0.0085	0.88 ± 0.015
	SGS	0.91 ± 0.019	0.84 ± 0.015	0.79 ± 0.010
	SGGGSMA	0.77 ± 0.015	1.1 ± 0.0030	0.78 ± 0.022
РΝ	SGGGSGG	0.73 ± 0.0093	1.1 ± 0.0090	1.1 ± 0.032

Table S6. Quenching levels of 12 combinations of CQ-probe using R6G with different linkers mixed with anti-BGP Fab (50 nM), anti-CS IgG (5.0 nM), anti-TS IgG (5.0 nM), and anti-digoxin IgG (10 nM). CQ-probe concentration in all experiments was 1.0 nM. The data represent means \pm standard deviation (n = 3).

A BGP-C7

PM-E4 linker / R-K4 linker	+ Anti-BGP Fab (30 nM)	+ BGP-C7 (3.0 μM)	Response
SGS/(GGGS) ₂	0.13 ± 0.016	1.2 ± 0.011	9.0
SGGGSMA/(GGGS) ₀	0.16 ± 0.049	1.3 ± 0.013	8.2
SGGGSMA/(GGGS) ₁	0.18 ± 0.020	1.2 ± 0.018	6.6
SGGGSMA/(GGGS) ₂	0.13 ± 0.019	1.2 ± 0.0088	9.2
SGGGSGG/(GGGS) ₀	0.15 ± 0.063	1.2 ± 0.0055	7.9
SGGGSGG/(GGGS)1	0.16 ± 0.065	1.2 ± 0.011	7.3
SGGGSGG/(GGGS) ₂	0.13 ± 0.031	1.2 ± 0.0055	9.0
B CS			
PM-E4 linker / R-K4 linker	+ Anti-CS IgG (5.0 nM)	+ CS (1.0 mM)	Response
SGS/(GGGS) ₂	0.24 ± 0.0034	0.87 ± 0.028	3.6
SGGGSGG/(GGGS) ₁	0.24 ± 0.031	$0.82 \!\pm\! 0.027$	3.5
SGGGSGG/(GGGS) ₂	0.23 ± 0.076	0.83 ± 0.0051	3.6
C TS			
PM-E4 linker / R-K4 linker	+ Anti-TS IgG (5.0 nM)	+ TS (1.0 μM)	Response
SGGGSMA/(GGGS) ₁	0.57 ± 0.012	1.1 ± 0.0046	1.9
SGGGSGG/(GGGS) ₀	0.62 ± 0.0098	1.1 ± 0.020	1.8
SGGGSGG/(GGGS)1	0.60 ± 0.021	1.1 ± 0.025	1.8
D Digoxin			
PM-E4 linker / R-K4 linker	+ Anti-digoxin IgG (10 nM)	+ Digoxin (1.0 μM)	Response
SGGGSMA/(GGGS) ₀	0.86 ± 0.0020	1.2 ± 0.017	1.4
SGGGSGG/(GGGS) ₀	0.83 ± 0.011	1.2 ± 0.015	1.5

Table S7. Fluorescence responses for selected R-K4 labeled CQ-probes/antibody complexes againstBGP-C7, cortisol, testosterone, and digoxin. The data represent means \pm standard deviation (n = 3).

Figure S1. The molecular structure of dye-labeled K4 peptides.

Figure S2. SDS-PAGE analysis of purified antibodies. (A) Anti-BGP Fab. (B) Anti-CS IgG.

Figure S3. Fluorescence responses of selected T-K4 labeled CQ-probe/anti-hapten IgG complexes against antigens. (A) Complex with anti-cortisol IgG (5.0 nM) against cortisol (1.0 mM). (B) Complex with anti-testosterone IgG (5.0 nM) against testosterone (1.0 μ M). (C) Complex with anti-digoxin IgG (10 nM) against digoxin (1.0 μ M). CQ-probe concentration in all experiments was 1.0 nM. The data represent means \pm standard deviation (n = 3).

Figure S4. Fluorescence responses of selected R-K4 labeled CQ-probe/IgG complexes against antigens. (A) Complex with anti-BGP Fab (30 nM) against BGP-C7 (3.0 μ M). (B) Complex with anticortisol IgG (5.0 nM) against cortisol (1.0 mM). (C) Complex with anti-testosterone IgG (5.0 nM) against testosterone (1.0 μ M). (D) Complex with anti-digoxin IgG (10 nM) against digoxin (1.0 μ M). CQ-probe concentration in all experiments was 1.0 nM. The data represent means \pm standard deviation (n = 3).

Figure S5. The 3D structure of the heavy chain (left) and light chain (right) of anti-BGP Fab, KTM219 (PDB: 5X5X). The sides facing each other in Fab are shown toward this side. The Trp residues were given in different colors depending on their contribution to the fluorescence response. The contribution was based on the percentages of fluorescence response after Phe mutation calculated from descriptions in the previous paper (45% for H47; 55-66% for H33, H103, L35; 84% for H36).⁴ The high contribution is red, the moderate is orange, and the low is yellow.

Reference

R. Abe, H. Ohashi, I. Iijima, M. Ihara, H. Takagi, T. Hohsaka and H. Ueda, *J. Am. Chem. Soc.*, 2011, **133**, 17386–17394.