Supporting Information

Hairpin DNA-based Electrochemical Amplification Strategy for miRNA Sensing by Using Single Gold Nanoelectrodes

Hao Wang, Binbin Yang, Haoran Tang, Sufang Ding and Gen Liu*

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China

*corresponding author. Email: liugen7084@126.com

Contents:

Table S1 Oligonucleotide Sequences.

Table S2 laser-assisted pulling process parameters.

Table S3 Comparison of the sensitivity of available methods for the detection of miRNA.

Table S4 miRNA-15 detection in real Samples.

Fig. S1 CV of NEs in 0.5 M H_2SO_4 solution.

Fig. S2 EDS of NEs.

Fig. S3 Polyacrylamide gel electrophoresis.

- *Fig. S4* UV–visible absorption spectra.
- Fig. S5 Optimizations of experimental parameters of miRNA reaction time.
- *Fig. S6* The effects of the hybridization time of DNA1 and DNA2-cylinder.
- Fig. S7 Optimization of MB absorption time.

Sequence	5' – 3'
H1	AGG GCA CGA GAC GGG GCC TAG CGA AAC GCA
	AGC GAC GAG TGC TCA GAC
H2	GTT GGG CAC GTG TTG TCT CTC TGT GTC TCG TGC
	CCT TCG CTA GGC CCC
H3	GAC GCT TGC GTT GTC TGA GCA CTC CAC GTG
	CCC AAC ACA GAG AGA CAA
DNA1	$HS-(CH_2)_6$ -TTTTTT CAC AAA CCA TTA TGT GCT GCT
	AAT GGT TTG CGC CCC
DNA2	GGG GGC GCA AAC CAT TAG CAG CAC ATA ATG
	CGC CCC CTT TTT GGG GCC TAG CGA
miRNA-15	UAG CAG CAC AUA AUG GUU UGU G
miRNA-15	UAG CAG CAC GUA AUG GUU UGU G
(mismatch)	
miRNA-16	UAG CAG CAC GUA AAU AUU GGC G
miRNA-21	UAG CUU AUC AGA CUG AUG UUG A

 Table S1 Oligonucleotide Sequences.

Parameters	Heat	Filament	Velocity	Delay	Pull
Step 1	535	1	75	120	0
Step 2	555	1	100	120	180

 Table S2
 Laser-assisted pulling process parameters.

Method	Detection Target	Data Acquisition	Detection limit	Linear range	Ref.
Graphene films- based electrochemistry	miRNA-141 and miRNA-21	110 min	1 fM	No data	[1]
Dual-signal amplification	miRNA-16	70 min	43 fM	0.1 pM – 100 nM	[2]
Polyacrylamide gel electrophoresis	miRNA-21	>60min	10 pM	50 pM – 8 nM	[3]
Nanopore ionic current rectification	miRNA-21	>120min	0.056 pM	0.1 pM - 0.5 nM	[4]
Stochastic collision electrochemistry	miRNA-203	>5h	0.1 nM	0.10 - 10.0 nM	[5]
Stochastic collision electrochemistry	miRNA-15	>4h	0.05 pM	0.05 - 1.25 pM	[6]
NEs-based electrochemistry	miRNA-15	130 min	0.017 pM	0.05 - 500 pM	This work

Table S3 Comparison of the sensitivity of available methods for the detection ofmiRNA.

					_
Samples	Content	Spiked	Found	RSD*	Recovery
	(pM)	(pM)	(pM)	(%)	(%)
1		2.0	4.2 ± 0.4	3.50	104.30
2		4.0	5.8 ± 0.2	2.98	95.74
3	2.1 ± 0.5	6.0	8.0 ± 0.2	2.82	99.52
4		8.0	10.7 ± 0.3	3.14	106.28

Table S4 Spike recovery in MCF-7 total miRNA Extract Samples

*RSD (relative standard deviation) was calculated by three independent experiments.

Fig. S1 CVs of a single Au nanoelectrode in a 0.5 M H_2SO_4 solution. Scan rate: 50 mV/s. The area of the oxide region (blue) is 2.73×10^{-10} C, the active surface area could be calculated as 5.7×10^6 nm², and the corresponding effective roughness

factor is 726.

Fig. S2 EDS image of the Au NE.

Fig. S3 Polyacrylamide gel electrophoresis of different samples: Lane 1, DNA 1; Lane

2, H1; Lane 3, H2; Lane 4, H3; Lane 5, DNA cylinder. 8% polyacrylamide gel

electrophoresis after 90 min @ 100 V in 5× TBE buffer.

Fig. S4 UV–visible absorption spectra of MB (red curve), MB-DNA complex (blue curve) and DNA cylinder (black curve).

Fig. S5 Optimizations of experimental parameters of miRNA reaction time.

Fig. S6 The effects of the hybridization time of DNA1 and DNA2-cylinder.

Fig. S7 Optimization of MB absorption time.

Reference

- 1 D. Kong, S. Bi, Z. Wang, J. Xia and F. Zhang, Anal. Chem., 2016, 88, 10667–10674.
- 2 H. Tang, J. Zhu, D. Wang and Y. Li, Biosens. Bioelectron., 2019, 131, 88–94.
- 3 J. Zhang, W. Zhang and Y. Gu, Anal. Biochem., 2018, **550**, 117–122.
- 4 X. Qiu, J. Dong, Q. Dai, M. Huang and Y. Li, *Biosens. Bioelectron.*, 2023, **240**, 115594.
- 5 A. D. Castañeda, N. J. Brenes, A. Kondajji and R. M. Crooks, *J. Am. Chem. Soc.*, 2017, **139**, 7657–7664.
- 6 H. Wang, C. Yang, H. Tang and Y. Li, Anal. Chem., 2021, 93, 4593–4600.