Supporting information for

A pomegranate seed-structured nanozyme-based colorimetric immunoassay for highly sensitive and specific biosensing of *Staphylococcus aureus*

Jinghui Li,‡^{a,b} Yipeng Tang,‡^{a,b} Yunpeng Bai,^{b,c} Zhejun Zhang,^b Shaopeng Zhang,^b Tongyun

Chen,^{b,c,*} Feng Zhao,^{a,b,c,*}, Zhigang Guo,^{a,b,c,d,*}

- ^a Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- ^b Chest hospital, Tianjin University, Tianjin, 300072, China
- ^c Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
- ^d Tianjin Cardiovascular Diseases Institute, Tianjin, 300222, China
- ‡ Equal contribution
- * Corresponding author: leftcure@163.com (Tongyun Chen), zhaofeng7815@163.com (Feng

Zhao), zhigangguo_2023@163.com (Zhigang Guo)

Fig. S1. The oxidation procedure of TMB with Ps-PtAu NPs.

Fig. S2. The oxidation procedure of 4-AAP and TOPS with Ps-PtAu NPs.

Fig. S3. The UV-vis absorbance spectra of TOPS + 4-AAP and TOPS + 4-AAP with Ps-PtAu NPs

Fig. S4. The absorbance intensity of TMB at 651 nm with different reaction times.

Fig. S5. The linear relationship between the S. aureus concentration and the green channel.

Bacteria	Methods	Detection range	LOD	Reference
		(CFU/mL)	(CFU/mL)	
S. aureus	Temperature	10 ² -10 ⁶	6.0	[1]
S. aureus	SERS	101-107		[2]
S. aureus	Electrochemical	1×10 ³ -1×10 ⁹	3.1×10 ²	[3]
S. aureus	SERS	101-107	3	[4]
S. aureus	Fluorescence	10 ² -10 ⁵	2.7×10 ²	[5]
S. aureus	Fluorescence	10 ¹ -10 ⁶	6.9	[6]
S. aureus	Colorimetric	3×10 ² -3×10 ⁸	1.2×10 ²	[7]
S. aureus	Smartphone	10 ¹ -10 ⁶	1.0	This work

Table S1. Comparation the as-prepared strategy and previous research for the detection of *S. aureus*

$LOD=3\sigma/s$

Here, σ is the deviation from the blank value; *s* is the slope of the standard curve.

References

- Lin X, Ibarlucea B, Peng T, et al. Two birds with one stone: A multifunctional nanoplatform for photothermal sensitive detection and real-time inactivation of *Staphylococcus aureus* with NIR responsive Cu_{2-x}Se@Van NPs. Sensors and Actuators B: Chemical, 2023, 381,133475.
- 2. Gao X, Yin Y, Wu H, et al. Integrated SERS platform for reliable detection and photothermal elimination of bacteria in whole blood samples. Analytical Chemistry, 2020, 93, 3, 1569-1577.
- Yue H, Zhou Y, Wang P, et al. A facile label-free electrochemiluminescent biosensor for specific detection of *Staphylococcus aureus* utilizing the binding between immunoglobulin G and protein A. Talanta, 2016, 153, 401-406.
- Xie B, Wang Z P, Zhang R, et al. A SERS aptasensor based on porous Au-NC nanoballoons for *Staphylococcus aureus* detection. Analytica Chimica Acta, 2022, 1190, 339175.
- Wang Z, Feng X, Xiao F, et al. A novel PEG-mediated boric acid functionalized magnetic nanomaterials based fluorescence biosensor for the detection of *Staphylococcus aureus*. Microchemical Journal, 2022, 178, 107379.
- Guo Y, Zheng Y, Liu Y, et al. A concise detection strategy of *Staphylococcus aureus* using N-Succinyl-Chitosan-dopped bacteria-imprinted composite film and AIE fluorescence sensor. Journal of Hazardous Materials, 2022, 423, 126934.
- Zhou W, Wen H, Hao G, et al. Surface engineering of magnetic peroxidase mimic using bacteriophage for high-sensitivity/specificity colorimetric determination of *Staphylococcus aureus* in food. Food Chemistry, 2023, 136611.