Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2023

1	Supplementary Materials							
2								
3	A recyclable Eu ³⁺ -functionalized dual-emissive metal-organic							
4	framework for portable, rapid detection and efficient							
5	removal of malachite green							
6	Hou-Qun Yuan ^a , Wei Li ^{a, b} , Yi-Fan Xia ^a , Si-Yi Liu ^b , Yu-Fei Zhong ^b , Zhen-Chong Dou ^a ,							
7	Xia Wei ^a , Ran Wang ^a , Peiyao Chen ^a , Yan-Xia Li ^b , Guang-Ming Bao ^{a, *}							
8								
9								
10								
11	^a Key Laboratory of Fermentation Engineering (Ministry of Education), National							
12	e. "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key							
13	Laboratory of Industrial Microbiology, School of Food and Biological Engineering,							
14	Hubei University of Technology, Wuhan 430068, China							
15	^b College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang							
16	330045, China							
17								
18								
19								
20								
21								
22	*Corresponding authors. (E-mail: <u>bycb2005@163.com</u>)							

23 Chemicals and Instrumentations

All the chemicals were commercial supplied and used without further purification. Eu(NO₃)₃·6H₂O (99.9%), ZrCl₄ (98%), MG and other detection substances were obtained from 9-Ding chemistry reagent (China). The fish pond water was collected from local fish farming pond, and fish meat was purchased from the local supermarket. Fluorescent spectra were recorded on an Edinburgh Instruments FS-5 spectrophotometer. N₂ adsorption-desorption isotherms were conducted on a Micrometrics TriStarII Plus (Micromeritics, U.S.A) at 77 K.

31 Powder X-ray diffraction (PXRD) patterns were determined using a D8 Advance diffractometer with CuKa radiation. Fourier transform infrared (FT-IR) spectra were 32 recorded on a NICOLET 5700 FT-IR Spectrometer in the range 4000 - 400 cm⁻¹ using 33 KBr pellets. XPS signals were recorded on a Thermo Fisher Scientific Escalab 250Xi 34 with a monochromatic Al K α (hv = 1486.6 eV). Inductively coupled plasma-mass (ICP-35 MS) date was obtained on Agilent 7700 ce. Energy-dispersive X-ray spectroscopy 36 (OxfordX-MAX) were used to measure and obtain the mi-crographs of the 37 microspheres and the chemical composition. 38

39

40

43 Fig. S1. EDX spectrum of the visualized excerpt EuUCNDA

Fig. S2. Element mapping for C, O, Zr and Eu.

48 Fig. S3. (a) N_2 adsorption-desorption isotherms of UCNDA and EuUCNDA. (b)

49 Thermogravimetric Analysis of the UCNDA and EuUCNDA.

51 Fig. S4. (a) Solid state excitation and emission spectra of UCNDA. (b) The excitation and emission

50

54

⁵² spectra of UCNDA in DMF.

57 Fig. S5. Time-resolved fluorescence responses of EuUCNDA towards MG in DMF

58 solution.

59

56

60

62 Fig. S6. (a) Emission spectrum of EuUCNDA and ultraviolet absorption spectrum of MG; (b)

63 Fluorescence lifetimes of EuUCNDA and EuUCNDA with MG.

65 Fig. S7. (a) Relationship between in I_0/I_{612} the concentration of MG in fish pond water; (b)

66 Relationship between in I_0/I_{612} the concentration of MG in grass carp.

- -

Probe	Linear range	LOD	Respond time	Sample	Ref.
Eu-TDA	0-40µM	22.1nM	1 min	-	(1)
Eu ³⁺ @MIL-53 (Al)	0-400μΜ	57nM	5 min	fish	(2)
Al-MOF/RhB	0.54~216µM	1700nM	-	fish	(3)
MOF-Apt@MIP	0 -10µM	60nM	30min	water and fish sample	(4)
Eu(MAA) ₃ Phen	0.5-20µM	117.2nM	5 min	aquaculture water	(5)
Eu(PDCA) ₂	0 -3µM	39nM	-	-	(6)
CdTe QDs	$0.01{-}20\mu M$	4.7nM	4 min	fish	(7)
CdTe@MIP	0.05 - 20µM	17nM	10min	fish	(8)
MIPs- C ₃ N ₄ /CdTe QDs	54–1079nM	10.8nM	10min	fish	(9)
MIP-coated QDs	0.1-20µM	59nM	5 min	water and fish sample	(10)
PVP-Au/Cu-NCs	0.05-25µM	16nM	-	water	(11)
N, S-GQDS	1.37-13.7 nM	0.46 nM	-	fish	(12)
R-CDs	0-25µM	12.9 nM	1s	fish	(13)
CDs	0.07-2.5µM	21.0 nM	-	fish	(14)
CdTe QDs	Ds 0.027-137µM 17.0 nM - water		water	(15)	
EnUCNDA	0.01-50µM	13.04nM	1 min	fish pond	This
				water and fish	work

77 Table S2

Sample	picture	Added(µM)	$Found(\mu M)$	RSD	Recover
Grass carp1		4	4.39	4.18%	109.84%
Grass carp2		35	35.37	4.91%	101.06%
C		(5	50.10	1 1 40/	01.020/
Grass carp3		65	59.19	1.14%	91.02%

78 Quantification of MG in the fish with RSD

79 References

- 80 1 L. J. Han, Y. J. Kong, G. Z. Hou, H. C. Chen, X. M. Zhang and H. G.
- 81 Zheng, *Inorganic Chemistry*, 2020, **59**, 7181-7187.
- 82 2 K. Yi and L. Zhang, Food Chemistry, 2021, 354, 129584.
- 83 3 X. Yue, Y. Li, S. Xu, J. Li, M. Li, L. Jiang and Y. Bai, Food Chemistry, 2022, 371,

84 131164.

- 85 4 N. Duan, X. Chen, X. Lin, D. Ying, Z. Wang, W. Yuan and S. Wu, Sensors and
- 86 *Actuators B: Chemical*, 2023, **384**, 133665.
- 87 5 G. Fu, H. Weng, Z. Lai, Z. Lin and Z. Huang, *Journal of Chemical*88 Sciences, 2021,133, 54.
- 89 6 Y. J. Kong, G. Z. Hou, Z. N. Gong, F. T. Zhao and L. J. Han, RCS. advances, 2022,
- **90 12(14)**, 8435-8442.
- 91 7 J. Yang, Z. Z. Lin and Z. Y. Huang, *Marine Pollution Bulletin*, 2020, 151, 110812.

- 92 8 J. Yang, H. Wu, M. H. Wu, J. Zeng, Z. Z. Lin, X. M. Chen and Z. Y. Huang, *Dyes*93 and Pigments, 2018, 155, 171-178.
- 94 9 H. Shi, L. Zhang, G. Yu, Y. Liu and L. Chen, Microchimica Acta, 2019, 186, 1-10.
- 95 10 L. Wu, Z. Z. Lin, H. P. Zhong, X. M. Chen and Z. Y. Huang, Sensors and Actuators
- 96 B: Chemical, 2017, **239**, 69-75.
- 97 11 Z. Li, T. Shen, J. Gu and S. A. Chattha, New journal of Chemistry, 2022, 46(4),
 98 1658-1664.
- 99 12 J. Qiu, L. Na, Y. Li, W. Bai, J. Zhang and L. Jin, Food Chemistry, 2022, 390,
- 100 133156.
- 101 13 S. Cai, J. Li, P. Sun, J. Tao, Y. Fu, R. Yang and L. Qu, Sensors and Actuators B:
- 102 *Chemical*, 2023, **380**, 133311.
- 103 14 Y. Hu, Z. Gao and J. Luo, Food Chemistry, 2021, 335, 127677.
- 104 15 W. Gui, H. Wang, Y. Liu and Q. Ma, Sensors and Actuators B: Chemical, 2018,
- 105 **266**, 685-691.