Construction of a point-of-care electrochemical biosensor for

Escherichia coli 16S rRNA analysis based on MoS₂ nanoprobes

Lihui Yuwen, Xinyi Li, Liquan Wu, Yi Luo, Shao Su*

State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

E-mail: iamssu@njupt.edu.cn

1. Reagents and Materials

All the reagents are listed in the Supporting Information. N-butyl lithium was purchased from Amethyst. Polyvinylpyrrolidone (PVP·K30, molecular weight = 30 000-40 000), chloroauric acid (HAuCl₄·3H₂O) were purchased from Aladdin industries. molybdenum (IV) sulfide powders (<2 µm, 99%), polyacrylic acid(PAA), polyethyleneimine ethoxylated(PEI), potassium ferricyanide, potassium hexacyanoferrate(II), potassium chloride, Tris (2-carboxyethyl) phosphine (TCEP) and 6-mercapto-1-hexanol (MCH) were purchased from Sigma-Aldrich Co., Ltd. (Shanghai, China). Thionine (Thi), sodium phosphate dibasic dodecahydrate (Na₂HPO₄·12H₂O, ≥99.0%) and sodium phosphate monobasic dihydrate (NaH₂PO₄·2H₂O, ≥99.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Phosphate buffer solution (PB) was prepared by 0.2 M sodium phosphate dibasic dodecahydrate and 0.2 M sodium phosphate monobasic dihydrate. Aqueous solutions were prepared by using ultrapure water (> 18 MΩ·cm) obtained from a Millipore water purification system.

Fig. S1. CV curves of (a) HFGNs-SPCE, (b) DNA1/HFGNs-SPCE, (c) MCH/DNA1/HFGNs-SPCE, (d) 16S rRNA/MCH/DNA1/HFGNs-SPCE, (e) nanoprobes/16S rRNA/MCH/DNA1/HFGNs-SPCE.

Fig. S2. The detection conditions of this electrochemical biosensor were optimized. Signal intensities are obtained from Thi at -0.38 V. (A) Effect of MCH concentration, (B) effect of SH-DNA1 concentration, (C) DNA2-MoS₂-Thi-AuNPs concentration and (D) incubation time of DNA2-MoS₂-Thi-AuNPs on the detection performance of this biosensor.

Analytical method	Linear range (fM)	Detection limit (fM)	Reference
Electrochemistry	10 - 106	5	[1]
Electrochemistry	1 - 10 ³	10	[2]
Electrochemistry	1×10^{4} - 3 × 10 ⁹	10^{4}	[3]
Chemiluminescent	-	8	[4]
Surface plasmon resonance	-	0.45	[5]
Surface plasmon resonance	5×10^6 - 5×10^8	2×10 ⁶	[6]
Fluorescence	$10^{6} - 10^{7}$	$1.7 imes 10^5$	[7]
Fluorescence	$5 \times 10^{3} - 1.6 \times 10^{4}$	$6 imes 10^2$	[8]
Electrochemistry	$10^{1} - 10^{5}$	2.8	This work

Table S1. Comparison of analytical performance for 16S rRNA detection.

Table S2. The performance of this electrochemical sensor for 16S rRNA detection in milk

		samples.		
Sample	Add	Found	Recovery (%)	RSD (%)
	(fM)	(fM)		
1	1.0×10^{1}	10.8	108.0	2.2
2	1.0×10^{2}	105.0	105.0	1.8
3	1.0×10 ³	1019.1	101.9	1.6
4	1.0×10^{4}	9893.6	98.9	1.4
5	1.0×10 ⁵	96047.8	96.0	3.0

References:

- Q. Wang, Y. L. Wen, Y. Li, W. Liang, W. Li, Y. Li, J. H. Wu, H. Zhu, K. K. Zhao, J. Zhang, N. Q. Jia, W. P. Deng G. Liu, *Anal. Chem.*, 2019, **91**, 9277-9283.
- L. Esfandiari, S. Q. Wang, S. Q. Wang, A. Banda, M. Lorenzini, G. Kocharyan, H. G. Monbouquette, J. J. Schmidt, *Biosensors*, 2016, 6, 37.
- 3. A. Purwidyantri, C. H. Chen, B. J. Hwang, J. D. Luo, C. C. Chiou, Y. C. Tian, C. Y. Lin, C. H. Cheng, C.S. Lai, *Biosens. Bioelectron.*, 2016, 77, 1086-1094.
- 4. B. Bockisch, T. Grunwald, E. Spillner, R. Bredehorst, Nucleic Acids Res., 2005, 33, e101.
- A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, M. Tabrizian, *Biosens. Bioelectron.*, 2014, 52, 129-135.
- 6. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, R. M. Corn, Anal. Chem., 2001, 73, 1-7.
- 7. Y. V. Gerasimova and D. M. Kolpashchikov, Biosens. Bioelectron., 2013, 41, 386-390.
- 8.Y. V. Gerasimova, D. M. Kolpashchikov, Angew. Chem. Int. Ed., 2013, 52, 10586-10588.