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Figure S1: 1H NMR (300 MHz) spectra of the probe CPI in DMSO-d6

 

 Figure S2: 13C NMR (75 MHz) spectra of the receptor (CPI) in DMSO-d6.



                                                     

                                            

                                                     Figure S3: HRMS of the receptor (CPI)

                                                            Figure S4: FTIR Spectrum of CPI



Figure S5: UV-Vis spectra of CPI (20 µM) upon addition of different anions (40 μM) such as F-, Cl-, 

Br-, I-, ACO-, NO3
-, CO3

2-, SCN-, HCO3
-, N3

-, HSO4
-, SO4

2-, H2PO4
-, HPO4

2- and PO4
3- in DMSO.

Figure S6: Emission spectra of CPI (20 μM) upon addition of various anions (40 μM) such as F-, Cl-, 

Br-, I-, ACO-, NO3
-, CO3

2-, SCN-, HCO3
-, N3

-, HSO4
-, SO4

2-, H2PO4
-, HPO4

2-and PO4
3- in DMSO.



Figure S7: Competitive experiments of CPI (20 µM) for CN- (40 µM) in presence of common anions 
(40 µM). Fluorescence intensity at 625 nm for CPI itself (20 µM) (blue bar), with various coexisting 
anions (40 µM, red bar) such as F-, Cl-, Br-, I-, ACO-, NO3

-, CO3
2-, SCN-, HCO3

-, N3
-, HSO4

-, SO4
2-, 

H2PO4
-, HPO4

2-and PO4
3- and upon subsequent addition of CN- (40 µM) (green bar); λex= 410 nm.

                                              

Figure S8: Stoichiometry plot for CPI-CN- adduct formation by recording fluorescence intensity 
changes at 625 nm (λex= 410 nm).



Figure S9: Linear response curve of CPI at 625 nm depending on the CN- concentration.

 Figure S10: Fluorescence response of CPI and CPI-CN- as a function of pH. Fluorescence 
intensities were recorded within the pH rang of 0 to 12.



Figure S11: Lifetime decay profile of CPI (●●●) and CPI-CN-  adduct (●●●).

Determination of fluorescence Quantum Yields (Φ) of CPI and its adduct with CN-

The luminescence quantum yield was determined using coumarin-153 as reference dye. The compounds 

and the reference dye were excited at the similar wavelength and the emission spectra were then studied. 

The area of the emission spectrum was integrated and the quantum yield is determined according to the 

following equation:

S/R  =  [AS / AR ] x [(Abs)R /(Abs)S ] x [nS
2/nR

2]

Here, S and R are the luminescence quantum yields of the sample and reference dye, 

respectively. AS and AR are the area under the emission spectra of the sample and the reference 

respectively, (Abs)S and (Abs)R are the respective optical densities of the sample and the 

reference solution at the wavelength of excitation, and nS and nR stand for the values of refractive 

index for the respective solvent used for the sample and reference.

The quantum yields of CPI and CPI-CN- are determined using the above mentioned equation and the 

values are found to be 0.225 and 0.305 respectively. Radiative rate constant Kr and total non radiative 

rate constant Knr have been calculated using the equation -1 = Kr + Knr and Kr = f / (Table. S1).



Table S1: Determination of Fluorescence life-time data, quantum yield, radiative and non-

radiative rate constants

                                        

                                          

                                                    

 Figure S12. Mole ratio plot of CPI (20 µM) for CN- (40µM) at 625 nm using fluorescence titration 

method (λex= 410 nm).

Compd. Quantum 

yield(φ)

τ(ns) Kr(108 x S-1) Knr(108x S-1

CPI 0.225 2.95 0.7627 2.6271

CPI-CN- 0.305 3.51 0.8689 1.9801



  

Figure S13. Photostability plot of CPI and CPI-CN- adduct obtained within 0-2 min time interval 

in DMSO solution. The change in fluorescence intensity was recorded at 625 nm upon excitation 

at 410 nm.

Figure S14. FTIR spectra of CPI (black line) and CPI-CN- (red line)



Figure S15. Optimized structure of CPI calculated by DFT/B3LYP/6-31+G(d) method.

Figure S16. Optimized structure of CPI- calculated by DFT/B3LYP/6-31+G(d) method.



 Table S2. Crystallographic data and refinement parameters of the sensor (CPI)

Chemical formula C28 H18 N4

Formula weight 410.46

Temperature of study 293(2)

Crystal system orthorhombic

Space group Pbca

a, b, c [Å] 9.1730(7), 19.8496(16), 25.741(2)

/ β/ γ [] 90

V [ Å3] 4686.9(7)

Z 8

D(calc) [g/cm3] 1.163   

Mu(MoKa) [ /mm] 0.070

Radiation [Å] 0.71073

F(000) 1712

θ(Min-Max) [°] 2.052-25.048

Dataset (h; k; l) -10 to 10, -21 to 23, -25 to 30

Total collected data 32712

Unique data [Rint] 4130 [0.0674]

Refined parameters 325

R, wR2 0.0813, 0.2197

Goodness of fit 1.034

Residual density -0.346/0.403

CCDC Number 2287312



Table S3. Selected X-ray and calculated bond distances and angles of the sensor (CPI)

Bonds(Å) X-ray Calc.
N1 – C1 1.364(4) 1.31654
N1 – C7 1.383(4) 1.38191
N2 – C1 1.312(4) 1.38581
N2 – C2 1.386(4) 1.38391
N3 – C9 1.140(5) 1.16337
C1 – C8 1.463(4) 1.46462
C8 – C9 1.434(5) 1.43369
C8 – C10 1.339(5) 1.36552
C10 – C11 1.452(4) 1.45505

Angles(o ) X-ray Calc.
C1–N1–C7 106.5(3) 105.36614

C1–N2–C2 105.5(3) 106.99332

N2–C1–N1 112.8(3) 112.61983

N2–C1–C8 124.8(3) 123.45340

N1–C1–C8 122.4(3) 123.92247

C10–C8–C9 122.7(3) 123.09967

C10–C8–C1 122.2(3) 122.51273

C9–C8–C1 115.2(3) 114.38222

N3–C9–C8 176.9(4) 178.70198



                   Figure S17. Contour plots of some selected molecular orbitals of CPI

HOMO (E = -1.81 eV) HOMO-1 (E = -1.94 eV) HOMO-2 (E = -3.07 eV)

LUMO (E = 0.85 eV) LUMO+1 (E = 0.94 eV) LUMO+2 (E = 1.85 eV)

                 Figure S18. Contour plots of some selected molecular orbitals of CPI-

HOMO (E =  -5.52 eV) HOMO-1 (E =  -5.95 eV) HOMO-2 (E = -6.09 eV)

LUMO (E =  -2.48 eV) LUMO+1 (E =  -0.89 eV) LUMO+2 (E =  -0.68 eV)



Table S4. Vertical electronic transitions of CPI and CPI- calculated by TDDFT/CPCM method

Compd.    (nm)  E (eV)  Osc.
Strength 
(f)

    Key excitations Character

468.32 2.6474 0.7727 (99%) HOMOLUMO π  π*
CPI

377.16 3.2873 0.5368 (97%) HOMO-2LUMO π  π*

473.41 2.6189 0.7941 (85%) HOMOLUMO π  π*CPI–

448.02 2.7674 0.3516 (86%) HOMO-1LUMO π  π*

Table S5: Sensing performance of CPI towards CN- compared to other previously reported 

receptors.

Probe Solvent System Detection 
limit

Reaction 
time

Reference

DMF:H2O (1:1, v/v 0.21 µM [1]

CH3CN-H2O(8:2, 
pH=3-10    4.11x10-8 

M
[2]

CH3CN-H2O (v/v, 
19:1)

9.4x10-10 M [3]



THF-H2O (9:1) 2×10-6 M [4]

DMSO/H2O(7:3) 1.4x10-7 M [5]

Dioxane 1.0 µM Within 60 s [6]

DMSO-H2O 
(6:4,v/v), pH=7.1 6.4 µM [7]

DMSO-H2O (20-80% 
v/v)

0.96 µM
[8]

H2O/THF(8:2) 1.3x10-7 M [9]

DMSO
0.11 µM [10]

THF 0.034 µM [11]



DMSO/H2O
(1:99) 2.95x10-8 M

[12]

THF-H2O     (9:1, 
V/V), HEPES Buffer,  

pH=7.3 1.1x10-6 M
[13]

H2O-DMF(9:1,v/v)
1.15-1.2 nM 10-30 sec [14]

DMSO-H2O     (9:1, 
V/V), HEPES Buffer, 

pH=6-9
8.32x10-7 M Less than 1 

min

[15]

DMSO/H2O
(1:99,v/v)

2.26x10-7 M 15 sec [16]

DMSO 4.48x10-8 
M

50 sec Present 
work
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