Supporting Information

A Facial Synthesis of Ag Lattice Doped Mesoporous In₂O₃ Nanocubes for

High Performance Ethanol Sensing

Xinyu Liu,
a Cuiping Jia, $^{\rm b,*}$ Xin Liu,
a Jiabing Luo, a Yan Zhou, a Wenle Li, a Shutao Wangc, Jun Zhanga, *

^aSchool of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China

^bCollege of Science, China University of Petroleum, Qingdao 266580, China

^cCollege of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China

*Corresponding address

School of Materials Science and Engineering, China University of Petroleum, QingDao 266580 China.

E-mail: zhangj@upc.edu.cn

College of Science, China University of Petroleum, QingDao 266580 China.

E-mail: jiacuiping@upc.edu.cn

Fig. S1. The photo of fabricated In₂O₃ gas sensor.

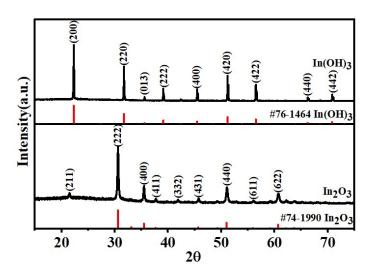


Fig. S2. XRD patterns of In(OH)₃ and In₂O₃.

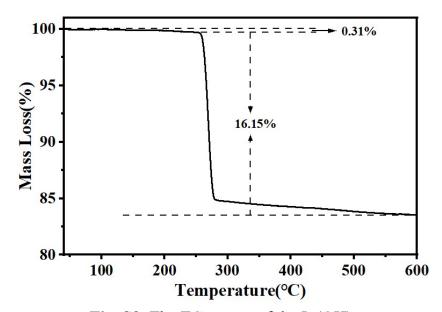
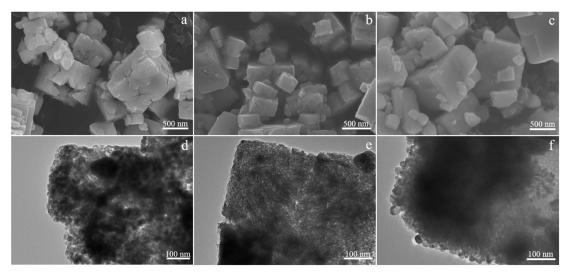
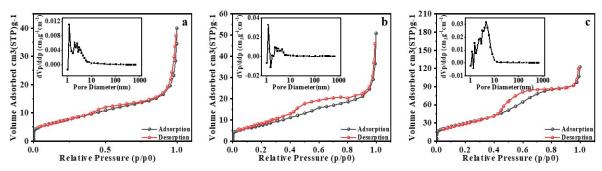




Fig. S3. The TG curves of the In(OH)₃.

Fig. S4. SEM images of (a) 3.0 mol% Ag-In₂O₃, (b) 5.0 mol% Ag-In₂O₃ and (c) 10.0 mol% Ag-In₂O₃. TEM images of (d) 3.0 mol% Ag-In₂O₃, (e) 5.0 mol% Ag-In₂O₃ and (f) 10.0 mol% Ag-In₂O₃.

Fig. S5. N₂ adsorption-desorption isotherms and pore diameter distribution (inset) curves of (a) 3.0mol% Ag-In₂O₃, (b) 5.0mol% Ag-In₂O₃ and (c) 10.0mol% Ag-In₂O₃.

Table S1. Summary of sensing properties towards ethanol of reported In₂O₃-based materials

Sensing materials	ethanol (ppm)	Working temp (°C)	Response	Reference
6mol% Ho-In ₂ O ₃	100	240	60	1
3% Ag-In ₂ O ₃	50	300	30.06	2
$3wt\% Eu_2O_3$ - In_2O_3	50	260	44	3
10mol% Ag-In ₂ O ₃	100	150	102	4
7mol% Ag-In ₂ O ₃	100	140	420	This work

References:

- H. Duan, Y. Wang, S. Li, H. Li, L. Liu, L. Du and Y. Cheng, Controllable synthesis of Ho-doped In₂O₃ porous nanotubes by electrospinning and their application as an ethanol gas sensor, *Journal of Materials Science*, 2017, DOI: 10.1007/s10853-017-1796-9.
- 2. K. Anand, J. Kaur, R. C. Singh and R. Thangaraj, Preparation and characterization of Ag-doped In₂O₃ nanoparticles gas sensor, *Chemical Physics Letters*, 2017, **682**, 140-146.
- 3. H. Lian, Y. Feng, Z. Wang, L. Liu, X. Guo and X. Wang, Porous Eu₂O₃-In₂O₃ nanotube-based ethanol gas sensor with high sensitivity and excellent selectivity, *Applied Physics a-Materials Science & Processing*, 2017, **123**.
- 4. Y. Zhang, Z. Zheng and F. Yang, Highly Sensitive and Selective Alcohol Sensors based on Ag-Doped In₂O₃ Coating, *Industrial & Engineering Chemistry Research*, 2010, **49**, 3539-3543.