Supplementary information

List of contents:

1. LC-MS/MS conditions and methods.

2. Sample pretreatment.

3. **Figure S1** Characterization of negative orange and celery samples. (a) Extracted ion chromatogram of chloridazon; (b) Mass spectrum of chloridazon; (c) Extracted ion chromatogram of negative orange samples; (d) Extracted ion chromatogram of negative celery samples.

4. Figure S2 Characterization of CLZH. (a) Extracted ion chromatogram of CLZH; (b) Mass spectrum of CLZH.

5. **Figure S3** Characterization of anti-CLZ mAb. (a) Optimization of methanol content in the buffer for ic-ELISA; (b) Optimization of pH in the buffer for ic-ELISA; (c) subtypes determination; (d) affinity detection of mAb 4C6; (e) affinity detection of mAb 5H11; (f) the SDS-PAGE result of mAb 4C6 and 5H11.

6. Figure S4 Optimization of ICA strip. (a) Optimization of the coating antigen concentration and the concentration of anti-CLZ mAb for labeling gold nanoparticles (1,3: the coating antigen concentration was 0.2mg/mL and the concentration of mAb were 5 μ g/mL and 10 μ g/mL, respectively; 2,4: the coating antigen concentration was 0.8 mg/mL and the concentration of mAb were 5 μ g/mL and 10 μ g/mL, respectively; 2,4: the coating antigen concentration was 0.8 mg/mL and the concentration of mAb were 5 μ g/mL and 10 μ g/mL, respectively); (b) Optimization of the resuspension buffer(1: 5% PVP; 2: 5% PEG; 3: 5% BSA; 4: 5% ON-870).

Table S1 The comparison of the ICA with other analytical methods.

1.LC-MS/MS conditions and methods

LC-MS was conducted on a Waters Quattro Premier XE system, equipped with an electrospray ionization (ESI) source. The analytical column used was a BEH C18 5 column (150 mm \times 2.1 mm, 1.7 µm). The operation conditions were the following, flow rate, 0.3 mL/min; injection volume, 5 µL; and column temperature, 45°C. The mobile phases were 100% acetonitrile (A) and 0.1% (v/v) formic acid in ultrapure water (B): 0

to 8 min, 95% B; 6 min, 5% B; 7 min, 5% B; 7.1 min, 95% B; and 10 min, 95% B. All chromatographic separation processes were carried out under a gradient elution program. MS detection was performed in a positive ion mode (ESI+). The ions were detected by MSE with a scan range of m/z 50 to 2,000 and the parameters were set as follows, ion source block temperature, 100°C; capillary voltage, 3,500 V; desolvation gas temperature, 400°C; desolvation gas flow, 700 L/h; cone voltage, 30 V; and collision energies, 6 eV and 20 eV. 2. Sample pretreatment

The food samples were washed, cut into pieces, and homogenized. For celery, 1 g of homogenized sample was placed in a 15-mL centrifuge tube. Following the addition of different concentrations of CLZ standard solution and 2 mL of aqueous solution containing 50% methanol, we centrifuged the samples at 8,000 rpm for 5 min after vortexing for 3 min. The supernatant was extracted for detection. The pre-treatment of the orange samples was similar; however, due to the acidic nature of the extracted solution, the pH was adjusted to neutral with 0.1 M NaOH. Finally, the samples were tested by ic-ELISA and ICA, using three replicates for each group of experiments.

Figure S1 Characterization of negative orange and celery samples. (a) Extracted ion chromatogram of Chloridazon; (b) Mass spectrum of chloridazon; (c) Extracted ion chromatogram of negative orange samples; (d) Extracted ion chromatogram of negative celery samples.

Figure S2 Characterization of CLZH. (a) Extracted ion chromatogram of CLZH; (b)

Figure S3 Characterization of anti-CLZ mAb. (a) Optimization of methanol content in the buffer for ic-ELISA; (b) Optimization of pH in the buffer for ic-ELISA; (c) subtypes determination; (d) affinity detection of mAb 4C6; (e) affinity detection of mAb 5H11; (f) the SDS-PAGE result of mAb 4C6 and 5H11.

Figure. S4 Optimization of ICA strip. (a) Optimization of the coating antigen concentration and the concentration of anti-CLZ mAb for labeling gold nanoparticles (1,3: the coating antigen concentration was 0.2 mg/mL and the concentration of mAb were 5 μ g/mL and 10 μ g/mL, respectively; 2,4: the coating antigen concentration was 0.8 mg/mL and the concentration of mAb were 5 μ g/mL and 10 μ g/mL, respectively; 2,4: the coating antigen concentration was 0.8 mg/mL and the concentration of mAb were 5 μ g/mL and 10 μ g/mL, respectively); (b) Optimization of the resuspension buffer(1: 5% PVP; 2: 5% PEG; 3: 5% BSA;4: 5% ON-870).

Method	Matrix	Pretreatment	LOD	Duration of	Reference
				analysis	
The immunochromatographic strip	oranges	simple	2 ng/mL	short	This work
	celery		10 ng/mL		
LC-MS/MS	hazelnuts	complex	4 µg/kg	long	Cebi, N.et
					al.(2021)
LC-MS/MS (SAM)	seawater	complex	10 ng/L	long	Skeff, W.et
LC-MS/MS (ISM)			0.3 ng/L		al.(2017)
HPLC-MS	wastewater	complex	/	long	Godejohann, M.et
					al.(2011)
α-Fe2O3-CdO electrochemical	spinach, lettuce,	simple	0.059µg/mL	short	Aruna, P.et
nanosensor	cauliflower,				al.(2022)
	cucumber, and				
	cabbage				

Table S1 The comparison of the ICA with other analytical methods.

References

1. N. Cebi, O. G. Manav and E. O. Olgun, *Microchem J.*, 2021, 166, 8.

2. W. Skeff, A. Orlikowska and D. E. Schulz-Bull, *Mar. Pollut. Bull.*, 2017, **114**, 1110-1117.

3. M. Godejohann, J. D. Berset and D. Muff, J. Chromatogr. A, 2011, **1218**, 9202-9209.

4. P. Aruna, P. R. Prasad, P. Sandhya, N. Rao and N. Y. Sreedhar, *Biointerface Res. Appl. Chem.*, 2022, **12**, 5772-5784.