A new and highly efficient CuMOF-based nanoenzyme and its applications for aptamer SERS/FL/RRS/Abs quadruple-mode analysis of ultratrace malachite green

Shuxin Chen, Yue Liu, Zhiyu Qin, Guiqing Wen*, Zhiliang Jiang*

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin 541004, China. Correspondence: gqwen@mailbox.gxnu.edu.cn; zljiang@mailbox.gxnu.edu.cn

1. Preparation of MOF and CuNM

CuMOF: Homophthalic acid (1.0 g) was dissolved in 30 mL of methanol/water (1:1) to obtain solution A. CuSO₄•5H₂O (2.0 g) was dissolved in 15 mL of H₂O to obtain solution B. B was slowly added to A, and then stirred for 2h, washed 3 times with ethanol and dried at 60 °C.

TiMOF: Weigh 0.562 g of 2-aminoterephthalic acid(NH₂-BDC) and 0.314 mL of glacial acetic acid dissolved in 40 mL of DMF-methanol (V=9:1), then add 0.592 mL of titanium isopropoxide and disperse by sonication for 30 min. The reaction was carried out in an oven at 150 °C for 24 h. Finally, the reaction products were washed with DMF and methanol and then dried at 60 °C.

ZrMOF: 400 mg of 2,2'-bipyridine-5,5'-dicarboxylic acid was weighed and dissolved in 30 mL of DMF, while ZrCl₄ (100 mg) was dissolved in 50 mL of DMF. 1 mL of acetic acid was added after mixing the above two and mixed for 10 min for 18 h. Finally, the reaction products were washed with DMF and THF and dried at 60°C.

FeMOF: FeCl₃• $6H_2O$ (0.41 g), NH₂-BDC (0.276 g) and DMF (30 mL) were sealed in a 50 mL PTFE bottle and heated at 120 °C for 20 h. When cooled to room temperature, brown crystals of

FeMOF were separated from the solution. Finally the reaction products were washed with DMF and ethanol and dried at 60 °C.

CoMOF: Cobalt nitrate (0.186 g), terephthalic acid (0.133 g) and DMF (25 mL) were sealed in a 50 mL PTFE bottle and heated to 120 °C for 12 h. When cooled to room temperature, the purple crystals of CoMOF were separated from the solution. Finally the reaction products were washed with DMF and ethanol and dried at 60 °C.

NiMOF: 0.166 g of terephthalic acid and 0.067 g of nickel chloride hexahydrate were weighed, dissolved in 20 mL of DMF and completely dissolved by stirring at room temperature. Then 2 mL of 0.4 M sodium hydroxide was slowly added dropwise and the reaction was carried out at 100 °C for 8 h. Finally the reaction products were washed with DMF and ethanol and dried at 60 °C.

The H_2O_2 -TMB system was difficult to react under the conditions of a water bath at 50 °C. In this work, several MOFs were screened for their catalytic effect on the TMB reaction. Among them, CuMOF, ZrMOF, TiMOF and FeMOF can catalyse the H₂O₂-TMB reaction to produce a light blue TMBox. The fluorescence spectrum was obtained by scanning at volt=350 V, excited slit=emission slit=10 nm and the TMBox showed a fluorescence peak at Ex=270 nm, Em=410 nm. For this nanocatalytic system, in a certain concentration range, the four MOFs mentioned above catalyzed the oxidation of TMB by H₂O₂, and as the concentration of MOF increased, the catalytically generated TMBox increased and eventually showed a strong fluorescence effect. In a word, the fluorescence intensity at this site showed a linear increasing relationship with the concentration of MOF. On the contrary, the concentrations of CoMOF and NiMOF showed a linearly decreasing relationship with the fluorescence intensity at this site, while CeMOF, AgMOF and ZnMOF had no catalytic effect on TMB. And it can be compared by the following figure (Fig.S1a-f), CuMOF has better catalytic effect indeed. And at the same time, compared with precious metal (Ag, Au, Pd, and Pt) MOFs, copper MOFs stood out among many high-performance MOFs due to its low cost, high optical performance, and other factors. Therefore, it is used as a precursor for synthesis of CuNM nanoenzymes.

It shows a comparison of the fluorescence spectra of the three MOF derivatives (CuNM, TiNM and ZrNM) in fig.S1g-i, all with varying degrees of improvement compared to the catalytic effect of the original MOF. The slope of the linear relationship allows a comparison of the strength of the catalytic effect of the catalysts, the stronger the catalytic effect when the slope is higher. The slope of the catalytic relationship is 3236.5 for CuNM and 1610 for CuMOF. It is obvious that CuNM has the best catalytic effect, so CuNM was chosen as the best catalyst for the subsequent experiments.

Porous Cu₂O/Cu/C carbon-based nanoenzymes (CuNM): Referring to previous methods[1, 2] and improving them, the above prepared MOF was prepared by high-temperature pyrolysis by taking 1 g of MOF powder in a quartz boat and placing it in a tube furnace under a nitrogen atmosphere throughout, with a heating rate of 10 °C/min to 700 °C and holding it for 2 h. After cooling to room temperature, the CuNM powder was obtained. Furthermore, the optimum preparation conditions were obtained with a heating time of 2 h and a heating temperature of 700 °C (Fig.S2).

Fig.S1. Fluorescence spectrum of MOF/NM -H₂O₂-TMB-Tris-HCl.

a: a: 0.55mmol/L Tris-HCl +0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.1mg/L CuMOF; c: a+0.25mg/L CuMOF; d: a+ 0.4mg/L CuMOF; e: a+ 0.5mg/L CuMOF; f: a+ 0.75mg/L CuMOF;g: a+ 1 mg/L CuMOF; h: a+ 1.1mg/L CuMOF.

b:a: 0.55mmol/L PH=4.4 Tris-HCl +0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.075mg/L TiMOF; c: a+0.25mg/L TiMOF; d: a+ 0.4mg/L TiMOF; e: a+ 1mg/L TiMOF; f: a+ 1.5mg/L TiMOF; g: a+2mg/L TiMOF; h: a+ 2.5mg/L TiMOF.

c:a: 0.55mmol/L PH=4.4 Tris-HCl +0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.1mg/L ZrMOF;

c: a+0.25mg/L ZrMOF; d: a+ 0.5mg/L ZrMOF; e: a+ 0.75mg/L ZrMOF; f: a+ 1mg/L ZrMOF;g: a+ 1.5mg/L ZrMOF.

d:a: 0.55mmol/L PH=4.4 Tris-HCl+0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.5mg/L FeMOF;
c: a+1mg/L FeMOF; d: a+ 2.5 mg/L FeMOF; e: a+ 5mg/L FeMOF; f: a+ 7.5mg/L FeMOF;g: a+10mg/L FeMOF.

e: a: 0.55mmol/L PH=4.4 Tris-HCl +0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.25mg/L CoMOF; c: a+2.5mg/L CoMOF; d: a+5 mg/L CoMOF; e: a+ 7.5mg/L CoMOF; f: a+ 10mg/L CoMOF; g: a+12.5mg/L CoMOF.

f: a: 0.55mmol/L PH=4.4 Tris-HCl +0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.25mg/L NiMOF; c: a+2.5mg/L NiMOF; d: a+ 5mg/L NiMOF; e: a+ 7.5mg/L NiMOF; f: a+ 10mg/L NiMOF; g: a+12.5mg/L NiMOF; h: a+ 15mg/L NiMOF.

g:a: pH 4.4 Tris-HCl+0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.02mg/L CuNM; c: a+0.08mg/L CuNM; d: a+ 0.1mg/L CuNM; e: a+ 0.15mg/L CuNM; f: a+ 0.2mg/L CuNM;g: a+ 0.3mg/L CuNM.

h: a: 0.55mmol/L PH=4.4 Tris-HCl+0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.05mg/L TiNM; c: a+0.1mg/L TiNM; d: a+ 0.15mg/L TiNM; e: a+0.375mg/L TiNM; f: a+ 0.5mg/L TiNM;g: a+1mg/L TiNM; h: a+ 1.5mg/L TiNM.

i: a: 0.55mmol/L PH=4.4 Tris-HCl +0.025 mmol/L TMB+0.05mmol/L H₂O₂; b: a+0.025mg/L ZrNM; c: a+0.125mg/L ZrNM; d: a+ 0.25mg/L ZrNM; e: a+0.5mg/L ZrNM; f: a+ 0.75mg/L ZrNM;
g: a+1mg/L ZrNM; h: a+ 1.25mg/L ZrNM; i: a+ 1.5mg/L ZrNM.

2. Optimization of CuNM preparation conditions

Fig.S2. Optimisation of CuNM preparation conditions

a: Effect of time on the system ΔI ; b: Effect of temperature on the system ΔI

3. Characterisation of CuMOF/CuNM

Fig.S3. Abs spectra, potential map and particle size distribution of CuMOF/CuNM a: Abs spectra of CuMOF, the a-d curves represent 250, 500, 1000, 2000 µg/L CuMOF. b: Abs spectra of CuNM, the a-d curves represent 500, 1000, 1500, 2000 µg/L CuNM;

c、 d: Zeta potential diagram of CuMOF/CuNM;

e: Particle size distribution diagram of CuMOF/CuNM.

4. Stability of CuMOF/CuNM and SERS/UV-vis spectroscopy of nanocatalytic systems

The stability of CuNM is beneficial for the development of accurate and reasonable analytical methods. The prepared CuMOF and CuNM solutions were stored in a refrigerator at 4°C. The RRS and Abs signals of CuMOF and CuNM were recorded for 15 consecutive days with RSDs of 5.38% and 2.57%, respectively (Fig.S4a). CuNM shows good stability over time. In addition, the stability of CuMOF and CuNM in 200 mmol/L NaCl solution was studied. The results show that the RRS and Abs signals of CuNM tended to be stable in NaCl solution over time (Fig.S4b-c). The experimental results indicate that the method has good stability.

Fig.S4. Stability of CuMOF/CuNM, SERS spectrum of CuMOF/CuNM-H₂O₂-TMB-Tris-HCl system, SERS spectrum of CuMOF/CuNM-H₂O₂-TMB-Tris-HCl-Apt system

a: Stability of CuMOF/CuNM in water;

b: Stability of CuMOF/CuNM in 200 mmol/L NaCl solution (measured by RRS);

c: Stability of CuMOF/CuNM in 200 mmol/L NaCl solution (measured by Abs);

d: SERS spectrum of CuMOF-H₂O₂-TMB-Tris-HCl system: a: 0.55 mmol/LpH=4.4 Tris-HCl +0.025 mmol/L TMB+0.05mmol/L H₂O₂+11.6 mg/L AgNPs; b: a+0.1 mg/L CuMOF; c: a+0.2 mg/L CuMOF; d: a+ 0.4 mg/L CuMOF; e: a+ 0.5 mg/L CuMOF; f: a+ 0.75 mg/L CuMOF; g: a+ 1 mg/L CuMOF;

e: SERS spectrum of CuNM-H₂O₂-TMB-Tris-HCl system: a: 0.55mmol/L pH=4.4 Tris-HCl+0.025 mmol/L TMB+0.05mmol/L H₂O₂+11.6 mg/L AgNPs; b: a+0.03mg/LCuNM; c: a+0.08mg/LCuNM;
d: a+ 0.1mg/LCuNM; e: a+ 0.15mg/LCuNM; f: a+ 0.2mg/LCuNM;g: a+ 0.3mg/LCuNM; h: a+ 0.35mg/LCuNM.

f: SERS spectrum of CuMOF-H₂O₂-TMB-Tris-HCl-Apt system: a: 0.55 pH=4.4 mmol/L Tris-HCl
+0.025 mmol/L TMB+0.05mmol/L H₂O₂+0.5 mg/L CuMOF; b: a+0.5nmol/LApt; c: a+2nmol/LApt;
d: a+4 nmol/LApt; e: a+7.5nmol/LApt; f: a+ 11nmol/LApt; g: a+ 12.5nmol/LApt.

g: SERS spectrum of CuNM-H₂O₂-TMB-Tris-HCl-Apt system: a: 0.55 pH=4.4 mmol/L Tris-HCl
+0.025 mmol/L TMB+0.05mmol/L H₂O₂+0.3 mg/L CuNM; b: a+1nmol/LApt; c: a+2.5nmol/LApt;
d: a+6 nmol/LApt; e: a+9nmol/LApt; f: a+ 12.5nmol/LApt; g: a+ 15nmol/LApt.

Fig.S5. UV absorption spectra of CuMOF/ CuNM -H₂O₂-TMB-Tris-HCl-Apt-MG system **a:** a: 0.55mmol/L pH=4.4 Tris-HCl +0.0375 mmol/L TMB+0.05mmol/L H₂O₂+0.5 mg/LCuMOF+15nmol/LApt+11.6mg/LAgNPs; b:a+0.25nmol/LMG; c: a+0.5nmol/L MG; d: a+1 nmol/LMG; e: a+2nmol/L MG; f: a+ 3nmol/L MG;g: a+ 4nmol/L MG.

b: a: 0.55mmol/L pH=4.4 Tris-HCl +0.0375 mmol/L TMB+0.05mmol/L H₂O₂+0.3 mg/LCuNM+20nmol/LApt+11.6mg/L AgNPs; b: a+0.05nmol/L MG; c: a+0.25nmol/L MG; d: a+0.4 nmol/LMG; e: a+0.5nmol/LMG; f: a+ 0.75nmol/LMG; g: a+ 1nmol/LMG.

5. Condition optimization

Fig.S6. Optimization of analytical conditions for fluorescent systems

a: Effect of Tris-HCl buffer solution on system ΔF, a: 0.03 mg/L CuNM+0.05 mmol/L H₂O₂+ 0.0375mmol/L TMB+ pH=4.4 Tris-HCl+20 nmol/L Apt+0.1nmol/L MG

b: Effect of TMB concentration on system ΔF , a: 0.03 mg/L CuNM + 0.05 mmol/L H_2O_2+TMB+

0.55 mmol/L pH=4.4 Tris-HCl+20 nmol/L Apt +0.1nmol/L MG

c:Effect of H_2O_2 concentration on system ΔF , a: 0.03 mg/L CuNM + H_2O_2 + 0.0375mmol/L TMB+

0.55 mmol/L pH=4.4 Tris-HCl+20 nmol/L Apt +0.1nmol/L MG

d: Effect of Apt concentration on system ΔF , a: 0.03 mg/L CuNM + 0.05 mmol/L H₂O₂+ 0.0375 mmol/L TMB+ 0.55 mmol/L pH=4.4 Tris-HCl+ Apt +0.1nmol/L MG

e: Effect of CuMOF/CuNM concentration on system ΔF , a: CuMOF/CuNM + 0.05 mmol/L

H2O2+ 0.0375 mmol/L TMB+ 0.55 mmol/L pH=4.4 Tris-HCl+20 nmol/L Apt +0.1nmol/L MG

f: Effect of temperature on the system ΔF , a: 0.03 mg/L CuNM + 0.05 mmol/LH₂O₂+

0.0375 mmol/L TMB + 0.55 mmol/L pH = 4.4 Tris-HCl + 20 nmol/L Apt + 0.1 nmol/L MGg: Effect of time on the system ΔF , $0.03 \text{ mg/L CuNM} + 0.05 \text{ mmol/LH}_2O_2 + 0.0375 \text{mmol/L TMB} + 0.55 \text{ mmol/L pH} = 4.4 \text{ Tris-HCl} + 20 \text{ nmol/L Apt} + 0.1 \text{ nmol/L M}$

6. Comparison of the nanocatalysis

	Linearity		Correlation coefficient	
Catalysts	range (mg/L)	Regression equation		
CuMOF	0.1-1.1	ΔF _{410nm} =1610C - 27.03	0.987	
TiMOF	0.075-2.5	ΔF_{410nm} =300.53C + 120.8	0.9832	
ZrMOF	0.1-1.5	ΔF_{410nm} =781.85C + 461.4	0.9876	
FeMOF	0.5-10	ΔF_{410nm} =62.24C + 77.95	0.9669	
CoMOF	0.25-12.5	ΔF_{410nm} =36.67C + 93.7	0.9193	
NiMOF	0.25-15	ΔF_{410nm} =29.95C + 256.4	0.9105	
CuNM	0.02-0.3	ΔF_{410nm} = 3236.5 C + 0.69	0.9802	
TiNM	0.05-1.5	$\Delta F_{410nm} = 977.87C + 154.7$	0.9839	
ZrNM	0.025-1.5	$\Delta F_{410nm} = 1072.7C + 87.4$	0.9946	
HRP	0.05-1	$\Delta F_{410nm} = 1103.7C + 76.96$	0.9794	

Table S1 Comparison of NM/HRP-H₂O₂-TMB catalysis with FL technique

7. Comparison of the characteristics of some of the reported MG analysis methods

Table S2 Comparison of the characteristics of some of the reported MG analysis methods

Analytical methods	Analysis principle	Linear LOD	Analysis	References	
	· ······	range	characteristics		

Enzyme-linked immunosorbent assay (ELISA)	Direct competitive ELISA was used to detect MG using magnetic molecularly imprinted polymers (MMIPs) as biomimetic antibodies	0.1-10000 μg/L.	0.1 μg/L	ThismethodcanquicklydetectMG infishsampleswithgoodspecificity,accuracy,andreliability	[3]
Visualization of High Performance Liquid Chromatography (HPLC-VIS)	Aftercleaningwithimmunoaffinitycolumn(IAC), HPLC wasused todetermine the residue in fishmuscle. And then extractingthe residue, the extract waspurified on the prepared IAC.Finally, analyze the eluentusing HPLC-VIS.	0.5-10 ng/g	0.15 ng/g	High selectivity, sensitivity, and low cost	[4]
Fluorescent sensor	A sensitive fluorescence sensor for detecting MG was prepared by decorating molecular imprinted polymers (MIPs) onto the surface of CdTe quantum dots (QDs). Constructed a MG detection ratio fluorescence sensor based on CdTe	0.08-20 μmol/L	12 μg/kg 0.4597 nmol/L	Applied for rapid detection of MG in fish samples Quantitative and visual detection for MG	[5]
Electrochemical method	quantum dots and N, S-GQDs A highly sensitive voltammetric method has been established for the rapid	0.02–40 nmol/L	4.0 nmol/L	This method has good daily repeatability, stability, and anti-	[7]

		determination of trace	
		amounts of MG in aquaculture	
		and fisheries using an	
		acetylene black paste	
		electrode modified with	
		cetylpyridinium bromide.	
		SERS active particles were	
		developed by using magnetic	
		nanoparticles (MNPs) as the	
		core, which were uniformly	
		decorated with AuNP and then	
		coated with a MOF shell of	
		MIL-100 (Fe). It acted as a	
		filter, allowing only	-
		appropriately sized molecules	
	. 1 1	to approach the internal	
	Enhanced	AuNP, thereby avoiding food	
Raman		matrix interference and	
Scattering(SE	.RS)	improving the recognition	
		ability of the analyte.	
		In this method, sea urchin-like	
		Au@SiO2 nanoparticles	
		(SG@SiO2 NPs) were	
		designed and synthesised to	10 ⁻⁵ -10 ⁻⁹
		improve their stability. The	mol/L
		morphology of SG@SiO2	
		NPs and the thickness of the	
		silica shell layer were	

interference ability

1.32×10⁻¹⁰ mol/L

MG can be detected in shrimp

[8]

This method can be used for micro 1.5×10⁻⁹mol/L [9] detection of MG in

actual samples

	adjusted, resulting in good					
	SERS performance.					
				Low detec	ction limits,	
	Aptamer-mediated CuNM-	0.004-1		stable,	sensitive,	
SERS/RRS/FL/Abs	catalyzed oxidation of TMB	0.004-1	0.0032 nmol/L	stable,	sensitive,	This work
		nmol/L		simple to o	operate, low	
	for detection of MG.			cost, good	specificity	

8. Influence of interfering ions

Coexistence material	of	Relative ratio	Relative error (%)	Coexistence of material	Relative ratio	Relative error (%)
Al ³⁺		500	7.6	Mg^{2+}	1000	-5.8
Co ²⁺		1000	1.0	CH ₃ COO ⁻	200	-6.1
Mn ²⁺		1000	4.6	SO4 ²⁻	1000	-0.1
NO ₃ -		200	7.1	Ni ²⁺	1000	3.4
Ba ²⁺		1000	3.9	HCO3 ⁻	200	-2.9
K ⁺		1000	0.3	CO3 ²⁻	1000	0.1
CV		100	-1.9	I-	1000	-2.6
NO ₂ -		500	0.5	Ca ²⁺	1000	1.8
$\mathrm{NH_4^+}$		1000	8.4	MB	50	3.5
Zn ²⁺		500	7.0	RBG	10	3.4
Hydathion		500	-6.5	SO4 ²⁻	1000	-0.1
Tetracycline		200	0.3	Malathion	500	-0.3
Oxytetracycline		200	-1.8			

Table S3 Influence of interfering ions on FL determination of MG

References

[1] J. Li, L. Huang, X. Jiang, L. Zhang, X. Sun, Preparation and characterization of ternary Cu/Cu2O/C composite: An extraordinary adsorbent for removing anionic organic dyes from water, Chem. Eng. J. 404 (2021) 127091. https://doi.org/10.1016/j.cej.2020.127091.

[2] T. Liu, R. Hu, X. Zhang, K. Zhang, Y. Liu, X. Zhang, R.-Y. Bai, D. Li, Y.-H. Yang, Metal–organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay, Anal Chem 88 (2016) 12516-12523. https://doi.org/10.1021/acs.analchem.6b04191.

[3] L. Li, Z.Z. Lin, A.H. Peng, H.P. Zhong, X.M. Chen, Z.Y. Huang, Biomimetic ELISA detection of malachite green based on magnetic molecularly imprinted polymers, J Chromatogr B Analyt Technol Biomed Life Sci 1035 (2016) 25-30. http://dx.doi.org/10.1016/j.jchromb.2016.09.015.

[4] J. Xie, T. Peng, D.D. Chen, Q.J. Zhang, G.M. Wang, X. Wang, Q. Guo, F. Jiang, D. Chen, J. Deng, Determination of malachite green, crystal violet and their leuco-metabolites in fish by HPLC-VIS detection after immunoaffinity column clean-up, J Chromatogr B Analyt Technol Biomed Life Sci 913-914 (2013) 123-128. <u>http://dx.doi.org/10.1016/j.jchromb.2012.12.002</u>.

[5] X. Cai, F. Ma, J. Jiang, X. Yang, Z. Zhang, Z. Jian, M. Liang, P. Li, L. Yu, Fe-N-C single-atom nanozyme for ultrasensitive, on-site and multiplex detection of mycotoxins using lateral flow immunoassay, J Hazard Mater 441 (2022) 129853. <u>https://doi.org/10.1016/j.jhazmat.2022.129853</u>.
[6] J. Qiu, L. Na, Y. Li, W. Bai, J. Zhang, L. Jin, N,S-GQDs mixed with CdTe quantum dots for ratiometric fluorescence visual detection and quantitative analysis of malachite green in fish, Food Chem 390 (2022) 133156. https://doi.org/10.1016/j.foodchem.2022.133156.

[7] P. Deng, J. Feng, Y. Wei, J. Xiao, J. Li, Q. He, Fast and ultrasensitive trace malachite green detection in aquaculture and fisheries by using hexadecylpyridinium bromide modified electrochemical sensor, J FOOD COMPOS ANAL 102 (2021) 104003. https://doi.org/10.1016/j.jfca.2021.104003.

[8] H. Pu, H. Zhu, F. Xu, D.W. Sun, Development of core-satellite-shell structured MNP@Au@MIL-100(Fe) substrates for surface-enhanced Raman spectroscopy and their applications in trace level determination of malachite green in prawn, J Raman Spectrosc 53 (2022) 682-693.https://doi.org/10.1002/jrs.6293.

[9] Y. Liu, L. Lei, Y. Wu, Y. Chen, J. Yan, W. Zhu, X. Tan, Q. Wang, Fabrication of sea urchin-like Au@SiO2 nanoparticles SERS substrate for the determination of malachite green in tilapia, VIB SPECTROSC 118 (2022) 103319. https://doi.org/10.1016/j.vibspec.2021.103319.