Supporting Information for

All-in-one detection of breast cancer-derived exosomal

miRNA on pen-based paper chip

Song Guo^a, Han Xie^b, Xudong Zhao^b, Honghao He^c, Xiaojun Feng^b, Yiwei Li^b,

Bi-Feng Liu^b and Peng Chen*^b

^aDepartment of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China

^bThe Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

^cSino-US Telemed (Wuhan) Co., Ltd.

^{*} Corresponding authors E-mail: gwchenpeng@mail.hust.edu.cn Tel: +86-27-87792203 Fax: +86-27-87792170

Preparation of lateral flow strip

i. Pretreatment of Sample Pads

Immerse a 20 cm \times 30 cm glass fiber membrane (GL-b04) in 50 mL of sample pad treatment solution. Air-dry at room temperature overnight and then dry in a 37 °C oven for 4 hours. After drying, cut into 2 cm \times 30 cm strips, seal in aluminum foil bags, and store in a constant temperature and humidity chamber for later use.

ii.Preparation of Detection Probes (AuNPs-FAM-Antibody)

Take 1.5 mL of 13 nm colloidal gold solution, add 0.2 M K₂CO₃ to adjust the pH to 9.0. The mixture was thoroughly shaken and mixed well. Add 20 μ g of streptavidin and react at room temperature for 2 hours. Add 10 μ L of 10% BSA, incubate at room temperature for 1 hour, then centrifuge (10 min, 4 °C, 10000 rpm). The supernatant liquid was discarded while the labeled complex precipitate obtained after resuspending with a volume of 100 μ L served as the detection probe (AuNPs-FAM-Antibody), which were stored away from light at 4 °C until further use.

iii.Preparation of Conjugate Pads

Cut a 22 cm \times 30 cm glass fiber membrane (8964) into 1 cm \times 30 cm strips and set aside in a constant temperature and humidity chamber. Spray the detection probe onto the 1 cm \times 30 cm glass fiber membrane at a rate of 6 μ L/cm. Air-dry overnight in a 37 °C oven, seal in aluminum foil bags, and store in a constant temperature and humidity chamber for later use.

iv.Preparation of Reaction Membrane

In the direction from conjugate pad to absorbent pad, coat 1 mg/mL anti-FAM antibody and 1 mg/mL biotin using a spray-coating instrument at a rate of 1 μ L/cm onto nitrocellulose membrane (NC membrane), designated as the test line and control line, respectively. After drying overnight in a 37 °C convection oven, seal in aluminum foil bags and store in a constant temperature and humidity chamber for later use.

v.Preparation of Absorbent Pads

Cut a 20 cm \times 30 cm absorbent paper (H-2) into 2.5 cm \times 30 cm strips and set aside in a constant temperature and humidity chamber.

vi.Assembly of Test Strips

Assemble all components on a PVC baseplate in the following order: sample pad, conjugate pad, reaction membrane, and absorbent pad. Each section should overlap by 1-2 mm. Use a programmable KM-3100 strip cutter to cut the assembled strip into a width of 4 mm. Place the cut strips into aluminum foil bags, seal with desiccant, and store in a constant temperature and humidity chamber for later use.

Reference	Platform	Target	Detection	Mechanism	Limits
			Method		detecti
Li et al.	Electrochemical	Lytic Exosome/	Electrochemical	Primer exchange reaction	0.29
[1]	biosensor	miRNA-21	biosensor	with MOF@Pt@MOF	fM
				nanozyme	
Li et al.	Carbon Nanotube	Purified exosomal	Carbon	Hybridization between the	0.87
[2]	Field-Effect	miRNA/	Nanotube Field-	immobilized DNA probe and	aM
	Transistor	miRNA-21	Effect Transistor	target miRNA	
	Biosensor		Biosensor		
Yang et al.	Micromixer	Intact Exosome/	Fluorescence-	Cationic Lipoplex	2.06 ×
[3]	Biochip	miRNA-21	based	Nanoparticles	10 ⁹ and
		TTF-1 mRNA			3.71 ×
					109
					exosor
					/mL
Zhao et al.	Thermophoresis	Intact Exosome/	Fluorescence-	Hybridization of DNA	0.36
[4]		miRNA-375	based	probes by nanoflares	fM
Cho et al.	96-well plates	Intact Exosome/	Fluorescence-	Molecular beacon	-
[5]		miRNA-21	based		
		miRNA -574-3p			
		CD63 EpCAM			
Deng et al.	Lateral flow assay	Lytic tumor cells/	Quantum dots-	Enzyme-free catalyzed	200
[6]		miRNA-21	labeled strip	hairpin assembly	aM
			biosensor		
Qian et al.	Agarose-based	Intact Exosome/	Fluorescence-	Enzyme-free catalyzed	1000
[7]	microfluidic chip	miRNA-21	based	hairpin assembly	exosor
This work	Pen-based paper	Lytic Exosome/	Lateral flow	Enzyme-free catalyzed	25 fM
	chip	miRNA-21	assay	hairpin assembly	

Table S1 Existing methods for microRNAs detection

Name	Sequen	ces (5'-3')								
HP1	1	2	3	4*	3*	2*				
	TCAACATC-AGTCTGA-TAAGCTA-CCATGTGTAGA-TAGCTTA-TCAGACT-FAM									
HP2	3	4	3*	2*	4*					
	TAAGCTA-TCTACACATGG-TAGCTTA-TCAGACT-CCATGTGTAGA-Biotin									
miR-21	UAGCUUAUCAGACUGAUGUUGA									
miR-210	CUGUGCGUGUGACAGCGGCUGA									
miR-214	ACAGCA	GGCACAGAG	CAGGCAG	U						

Table S2 Sequences of DNA probes and microRNA

Figure S1. Structure image and thermal kinetic parameters of HP1 probe and HP2 probe.

References

[1] X. Li, X. Li, D. Li, M. Zhao, H. Wu, B. Shen, P. Liu, S. Ding, Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme, Biosensors & bioelectronics 168 (2020) 112554, https://doi.org/10.1016/j.bios.2020.112554.

[2] T.X. Li, Y.Q. Liang, J.H. Li, Y. Yu, M.M. Xiao, W. Ni, Z.Y. Zhang, G.J. Zhang, Carbon Nanotube Field-Effect Transistor Biosensor for Ultrasensitive and Label-Free Detection of Breast Cancer Exosomal miRNA21, Analytical chemistry 93(46) (2021) 15501-15507, <u>https://doi.org/10.1021/acs.analchem.1c03573</u>.

[3] Y.C. Yang, E. Kannisto, S.K. Patnaik, M.E. Reid, L. Li, Y. Wu, Ultrafast Detection of Exosomal RNAs via Cationic Lipoplex Nanoparticles in a Micromixer Biochip for Cancer Diagnosis, Acs Appl Nano Mater 4(3) (2021) 2806-2819, <u>https://doi.org/10.1021/acsanm.0c03426</u>.

[4] J.X. Zhao, C. Liu, Y.K. Li, Y. Ma, J.Q. Deng, L.L. Li, J. Sun, Thermophoretic Detection of Exosomal microRNAs by Nanoflares, J Am Chem Soc 142(11) (2020) 4996-5001, https://doi.org/10.1021/jacs.9b13960.

[5] J.H. Lee, J.A. Kim, S. Jeong, W.J. Rhee, Simultaneous and multiplexed detection of exosome microRNAs using molecular beacons, Biosensors & bioelectronics 86 (2016) 202-210, https://doi.org/10.1016/j.bios.2016.06.058.

[6] H.P. Deng, Q.W. Liu, X. Wang, R. Huang, H.X. Liu, Q.M. Lin, X.M. Zhou, D. Xing, Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy, Biosensors & bioelectronics 87 (2017) 931-940, https://doi.org/10.1016/j.bios.2016.09.043.

[7] C.G. Qian, Y.J. Xiao, J. Wang, Y.W. Li, S.J. Li, B. Wei, W. Du, X.J. Feng, P. Chen, B.F. Liu, Rapid exosomes concentration and in situ detection of exosomal microRNA on agarose-based microfluidic chip, Sensor Actuat B-Chem 333(15) (2021) 129559, https://doi.org/10.1016/j.snb.2021.129559.