Supplementary Information

Rapid Measurement of Hemoglobin-Oxygen Dissociation by Leveraging Bohr Effect and Soret Band Bathochromic Shift

Zoe Sekyonda¹, Ran An², Utku Goreke², Yuncheng Man², Karamoja Monchamp^{2,3}, Allison Bode^{2,3}, Qiaochu Zhang², Yasmin El-Gammal⁴, Cissy Kityo⁵, Theodosia A. Kalfa^{4,6}, Ozan Akkus^{1,2,7}, Umut A. Gurkan^{1,2,7,8*}

Affiliations:

¹Department of Biomedical Engineering, Case Western Reserve University; Cleveland, OH, USA. ²Department of Mechanical and Aerospace Engineering, Case Western Reserve University; Cleveland, OH, USA.

³Division of Hematology and Oncology, University Hospitals Cleveland Medical Center; Cleveland, OH, USA.

⁴Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center; Cincinnati, OH, USA.

⁵The Joint Clinical Research Center; Kampala, Uganda.

⁶Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati, OH, USA

⁷Department of Orthopedics, Case Western Reserve University; Cleveland, OH, USA.

⁸Case Comprehensive Cancer Center, Case Western Reserve University; Cleveland, OH, USA.

*Corresponding author:

Umut A. Gurkan, PhD Wilbert J. Austin Professor of Engineering Case Western Reserve University Address: 10900 Euclid Ave., Glennan Building 616B, Department of Mechanical & Aerospace Engineering, Cleveland, OH, 4416. Phone: +1 (216) 368-6447 E-mail: umut@case.edu

Keywords:

Red blood cells, hemoglobin, hemoglobin-oxygen dissociation, optical absorption, heme-globin interaction.

Number of Supplementary Tables: 3

Number of Supplementary Figures: 3

Supplementary Results

Hb light absorption in oxygen dissociation assay

Net light extinction is a function of absorption and scattering, and light scattering is particularly sensitive to particle size and aggregation. While we cannot rule out scattering completely in the hemoglobin oxygen dissociation assay (Hb-O₂), its involvement is not likely to be as pronounced as absorption. The wavelength shift that we report holds regardless of Hb-O₂ dissociation measurements are conducted on Hb samples solubilized in solution (~5 nm particles), as RBCs (<10-micron particles), or whole blood (<10 microns and > 10-micron particles). On the other hand, the magnitude of the shift was different between RBCs, whole blood, and purified Hb (**Table S2**), (**Fig. S3**), indicating that light scattering may affect the intensity of the wavelength shift phenomenon because Hb is at high concentrations in red cells, where sickling is possible upon deoxygenation. To ascertain that the effects we report mainly stem from absorption, we sought the wavelength shift in samples by gradually increasing the concentration of Hb. We have seen that the shifting phenomenon, along with the magnitude of the shift, did not change with increasing concentration (**Fig. S1**), implying that scattering is not a significant contributor to Hb-O₂ dissociation when the Hb is dissolved in the aqueous environment.

Rigor and reproducibility

The repeatability of the bathochromic shift was established by comparing variations between two users in repeated measurements of the same whole blood samples at ~20 mmHg pO₂ (Fig. S2). Two samples were used in this study (one HbAA and one HbSS). Each sample was evaluated five times, and the same sample was analyzed in three microwells throughout each test, resulting in 15 tests for each user. The peak wavelength shifts between the two users showed good repeatability ((Mean± SEM) (User1: HbSS 421.6 ± 0.24, HbAA; 414.9 ± 0.11; User2: HbSS 421.1

 \pm 0.26, HbAA; 415.1 \pm 0.05) and coefficient of variance (COV) = 0.05 % for sickle and 0.02 % for normal). Bathochromic shifts between User 1 and User 2 for both HbAA and HbSS whole blood (p = 0.48) and (p = 0.48) were not significantly different. These results indicate reproducibility and good precision of the assay.

Supplementary Tables

Table S1: Comparison of Na₂S₂O₅ molecules, Hb molecules, and O₂ in buffer.

Hemoglobin (Hb) and oxygen (O ₂) molecules		
Total Hb molecules used in phosphate buffer	=	0.1g/ml
Each Hb molecule weights	=	64500 g/mol
Thus, Hb moles per ml of phosphate buffer $(0.1/64500)$	=	1.55x10 ⁻⁶ mol/ml
Number of hemoglobin molecules per mole	=	6.02x10 ²³ mol ⁻¹
Thus, total Hb molecules per ml of buffer $(6.02 \times 10^{23} \times 1.55 \times 10^{-6})$	=	9.34x10 ¹⁷ molecule/ml
Each Hb molecule contains 4 O_2 molecules.		
Thus, total O ₂ molecules per ml in buffer (9.34x10 ¹⁷ *4)	=	3.78x10 ¹⁸ molecule/ml
<u>Na₂S₂O₅ molecules</u>		
Total $Na_2S_2O_5$ molecules used in phosphate buffer (0.053M)	=	0.02g/ml
Each Na ₂ S ₂ O ₅ molecule weights	=	190.107g/mol
Thus, $Na_2S_2O_5$ moles per ml of buffer (0.02/64500)	=	1.05x10 ⁻⁴ mol/ml
Number of $Na_2S_2O_5$ molecules per mole	=	6.02x10 ²³ mol ⁻¹
Thus, total $Na_2S_2O_5$ molecules per ml of buffer (6.02x10 ²³ *1.05x10 ⁻⁴)	=	6.34x10 ¹⁹ molecule/ml
Ratio of $Na_2S_2O_5$ molecules: oxygen molecules per ml = 17		

Peak wavelength			
	HbAA	HbSS	P-value
	(Sample size)	(Sample size)	
Purified	417.2 ± 0.78	420.3 ± 0.52	P= 0.009
hemoglobin	(n=23)	(n=25)	
RBCs	418.0 ± 0.56	422.9 ± 0.63	P= 0.002
	(n=15)	(n=15)	
Whole blood	415.3 ± 0.23	419.6 ± 0.48	P= 0.001
	(n=15)	(n=20)	

Table S2: Peak wavelengths of hemoglobin analytes at pH 6.9 and $pO_2 = 75$ mmHg.

HbAA: healthy hemoglobin.

HbSS: homozygous sickle cell disease hemoglobin. Mann Whitney Non-parametric test was used to calculate p-values. Data is reported as mean \pm SEM.

	Peak wavelength	Peak intensity	Area under the curve	peak FWHM	Physiological Parameter Correlated	Physiological Relevance
Peak wavelength	1				Percentage of variant hemoglobin SS	Identification of Variant SS
Peak intensity	PCC = - 0.46 p = 0.000 Negative	1			Blood concentration of Hemoglobin (g/dl)	Determine the level of Hemoglobin level and Anemia
Area under the curve	PCC = - 0.76 p = 0.000 Negative	PCC = 0.94 p = 0.000 Positive	1		Anemia (low hemoglobin detection)	Identification of Anemia
Peak FWHM	PCC = - 0.22 p = 0.006 Negative	PCC = - 0.41 p = 0.000 Negative	PCC = - 40.0 p = 0.000 Negative	1	Sample homogeneity	Variation in samples

Table S3: Correlations between optical variables and physiological relevance

*PCC: Pearson Correlation Coefficient, p-values were obtained from linear regression model.

Supplementary Figures

Figure S1: Increasing the hemoglobin concentration (mg/dl) did not affect the shifting phenomenon in the oxygen-hemoglobin dissociation assay. Increasing the concentration of Hb from 0.3-11.2 mg/dl did not affect the peak wavelength shift. For all Hb concentrations below the critical polymerization concentration of 34g/dl, the peak wavelength of purified Hb was 420 ± 0.2 .

Figure S2: Robustness and repeatability of the oxygen-hemoglobin dissociation assay. Repeatability was determined from 20 tests comparing variances between 2 users. The peak wavelength shifts between the two users demonstrated strong repeatability (User1: HbSS: 421.6 ± 0.24 , HbAA: 414.9 ± 0.11 ; User2: HbSS: 421.1 ± 0.26 , HbAA: 415.1 ± 0.05) and coefficient of variance (COV) = 0.05 % for HbSS and 0.02 % for HbAA).

Figure S3: Peak wavelength comparative analysis of the purified Hb, RBCs, and Whole blood upon deoxygenation. Comparative analysis is shown for 5 individuals with HbSS (sickle hemoglobin) and 3 individuals with HbAA individual (healthy hemoglobin) in deoxygenated state. The peak wavelength shifts for RBCs were found to be higher than purified Hb (p = 0.001) and Whole blood (p = 0.001) and purified Hb was higher than whole blood for the same patient (p= 0.05). Peak wavelength shifts for HbAA are lower than that of HbSS.