Supplementary data

Clarity improvement of discoloration boundary and detection of Hg²⁺ ions by polystyrene nanoparticlemodified paper-based microdevice

Jingcheng Xiao, Jingjing Jiang, Zexu Zhao, Jiahao Guo and Jinyi Wang*

College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China

*Phone: + 86-29-870 825 20. Fax: + 86-29-870 825 20. E-mail: jywang@nwsuaf.edu.cn.

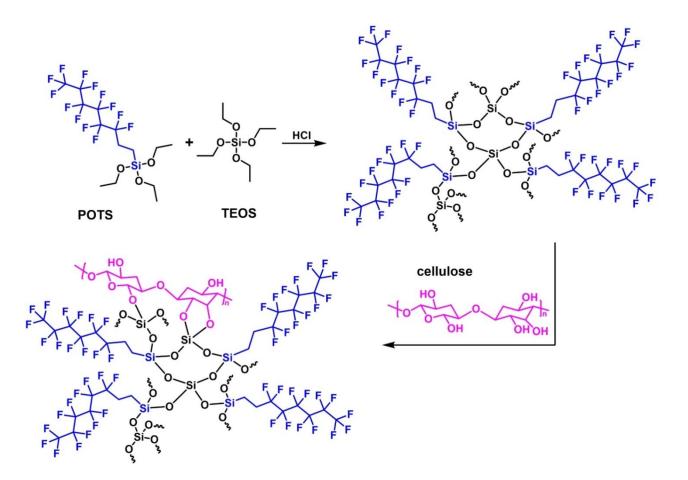


Figure S1. Preparation of the hydrophobic ink and its reaction with cellulose.

Figure S2. Schematic illustration of the PS NPs preparation route.

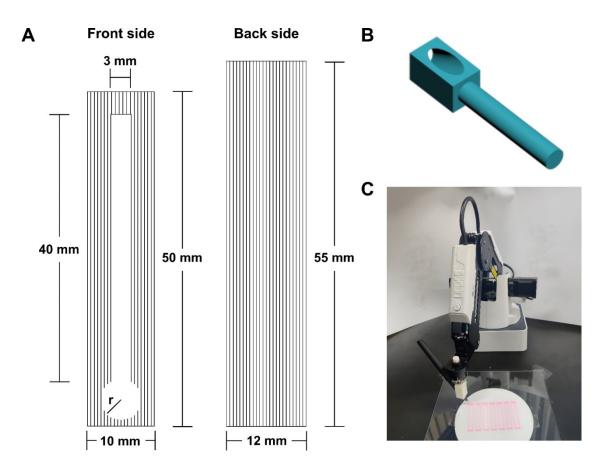


Figure S3. Design illustration of (A) single-channel μ PAD (r = 2.5 mm) and (B) pen-holding assembly.

(C) Working image of the robotic arm with pen-holding assembly.

Figure S4. Clamping method optimization. (A) Vertical clamping to write the word 'Vertical'. (B) Inclined clamping to write the word 'Inclined'.

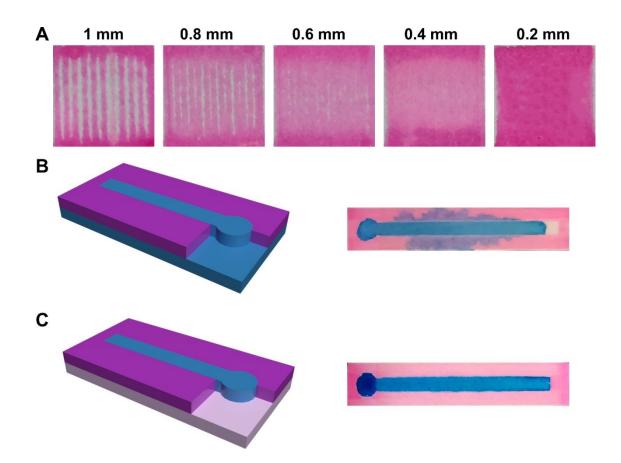


Figure S5. (A) Optimization of the drawing intervals. Solution flow of the µPADs drawn on the top

side (B) and both sides (C).

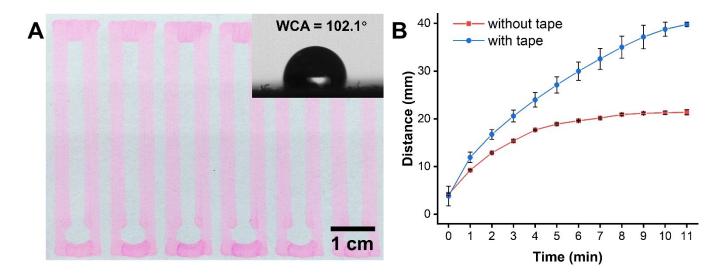


Figure S6. (A) Optical image of µPAD (inset: water contact angle image of the hydrophobic region). (B)

Variation of the flow distance with and without tape encapsulation.

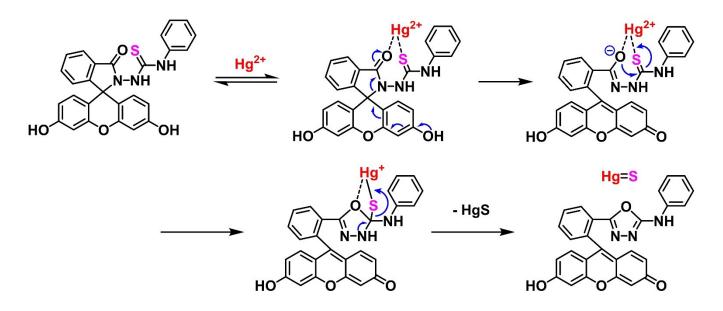
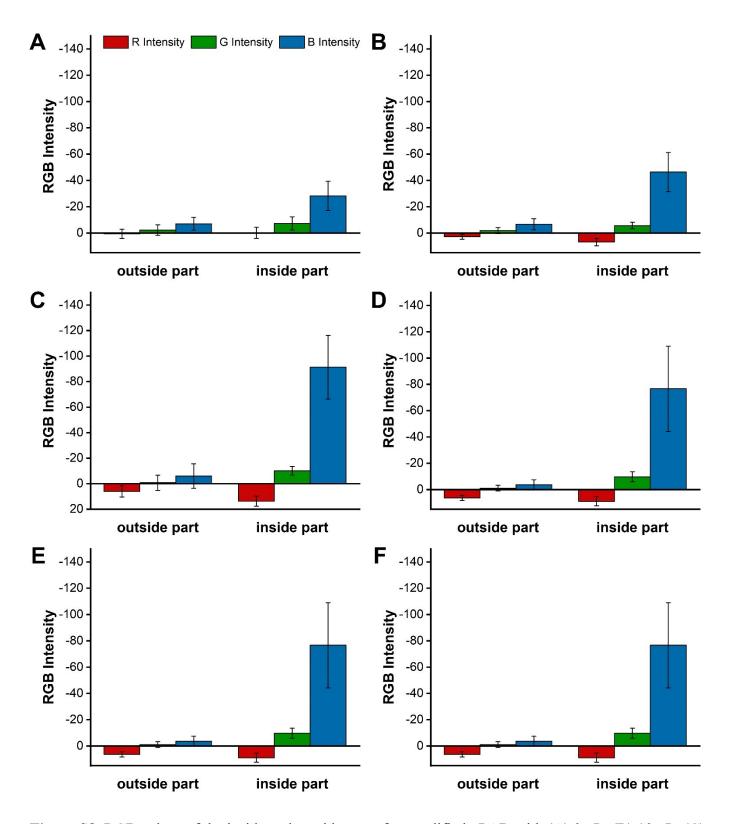



Figure S7. The reaction mechanism of Hg^{2+} ions detecting with FLPI.

Figure S8. RGB values of the inside and outside part after modified μPAD with (A) 0 μL, (B) 10 μL, (C) 20 μL, (D) 30 μL, (E) 40 μL, and (F) 50 μL of PS NPs suspension.

Sample	Added - (µM)	PS-µPAD		LC-AFS		
		Found (µM)	Recovery \pm RSD (%)	Found (µM)	Recovery \pm RSD (%)	
Тар	250	243.5	97.4 ± 8.9	246.7	98.7 ± 5.3	
	500	515.4	103.1 ± 5.0	501.1	100.2 ± 4.9	
water	750	742.0	98.9 ± 6.3	757.5	101.0 ± 6.7	

 Table S1. Detection of Hg²⁺ ions in real samples.

Material	SD of the measurements (%)	LOD (nM)	Detection time (min)	Real sample type	Reference
DNA	0.0688	10	25	lake water	1
carbon dots	250 µg/L 0.3209	29.9	40	drinking water pond water tap water	2
DNAzyme	25 nM 0.0599	0.23	35	lake water tap water river water	3
dithizone	0.3237	4.64 × 10 ³	N/A	whitening cream	4
small molecular probe	0.1420	6.45×10^4	15	tap water	This work

Table S2. Comparison of the proposed method with other distance-based methods of Hg^{2+} detection.

References

- 1 T. Dong, G. A. Wang, M. W. Li and F. Li, *Anal. Methods*, 2019, **11**, 5376-5380.
- 2 B. Ninwong, P. Sangkaew, P. Hapa, N. Ratnarathorn, R. F. Menger, C. S. Henry and W. Dungchai, *RSC Adv.*, 2020, **10**, 9884-9893.
- 3 C. Wu, G. Gao, K. Zhai, L. Xu and D. Zhang, Food Chem., 2020, 331, 127208.
- 4 L. Cai, Y. Fang, Y. Mo, Y. Huang, C. Xu, Z. Zhang and M. Wang, AIP Adv., 2017, 7, 085214.