Electronic Supplementary Information

Detection of CpG methylation level using methyl-CpG-binding domain

fused green fluorescent protein

Marika Fujita^a,[‡] Masanori Goto^a,[‡] Masayoshi Tanaka^b, and Wataru Yoshida^{*a,c}

a. Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan. Email: yoshidawtr@stf.teu.ac.jp

b. Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.

c. School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan

‡ Equal contributions.

Table S1 Oligonucleotides	sequences	used in	this	study.
----------------------------------	-----------	---------	------	--------

Name	Sequence (5'-3')	Length (mer)
Forward primer for AcGFP1	ACTGAATTCATGGTGAGCAAGGGCG	25
Reverse primer for AcGFP1	ACTGCGGCCGCTCACTTGTA	20
Methylated top strand	Biotin-AAAAAACAGGATXGAGCAGCTACCCT	26
Methylated bottom strand	AGGGTAGCTGCTXGATCCTG	20
Unmethylated top strand	Biotin-AAAAAACAGGATCGAGCAGCTACCCT	26
Unmethylated bottom strand	AGGGTAGCTGCTCGATCCTG	20
Methylated SEPT9 probe DNA	Biotin-AAAAAATTGACXGXGGGGTCXGACATGATGGC	32
Methylated SEPT9 target ssDNA	GCCATCATGTXGGACCCXGXGGTCAA	26
Unmethylated SEPT9 target ssDNA	GCCATCATGTCGGACCCCGCGGTCAA	26
Methylated BRCA1 probe DNA	Biotin-AAAAAACCCCXGGATGAXGTAAAAGGAAAGAG	32
Methylated BRCA1 target ssDNA	CTCTTTCCTTTTAXGTCATCXGGGGG	26
Unmethylated BRCA1 target ssDNA	CTCTTTCCTTTTACGTCATCCGGGGG	26
Methylated LINE-1 probe DNA	Biotin-AAAAAACAATATTXGGGTGGGAGTGA	26
Methylated LINE-1 target ssDNA	TCACTCCCACCXGAATATTG	20
Unmethylated LINE-1 target ssDNA	TCACTCCCACCCGAATATTG	20

X: 5-methylcytosine

Fig. S1 DNA sequence of Strep-tag II-MBD-AcGFP1.

The DNA sequence of Strep-tag II, MBD, and AcGFP1 are shown as orange, blue, and red, respectively.

Fig. S2 Fluorescence intensity of each fraction in the purification of MBD-AcGFP1.

The fluorescence intensity of flow-through fractions (F1-F2), wash fractions (W1-W8), and elution fractions (E1-E6) were measured using 5 μ L of samples with 45 μ L of 1× PBS.

Fig. S3 SDS-PAGE analysis of the elution fractions.

The elution fractions (1-6) were analyzed using 12% SDS-PAGE. Molecular weight of MBD-AcGFP1 is 3.8×10^4 .

Fig. S4 Optimization of the concentration of the MBD-AcGFP1.

The methylated top strand and unmethylated top strand were mixed with the methylated bottom strand and unmethylated bottom strand at 1.25 μ M in a binding buffer (1× PBS with 2 mM MgCl₂) to prepare symmetrically methylated and unmethylated dsDNA, respectively. The dsDNA (125 pmol) was immobilized on the streptavidin-coated wells, and MBD-AcGFP1 (100, 300, or 500 nM) was added. The fluorescence intensity of the bound MBD-AcGFP1 was measured (*n* = 3, mean ± SD).

Fig. S5 Raw fluorescence intensity of the binding assay of MBD-AcGFP1 against symmetrically, hemi-, and unmethylated dsDNA.

Fluorescence intensity of 1× PBS in the streptavidin-coated well, which contains neither any DNA nor MBD-AcGFP1 was measured as the background intensity.

Fig. S6 Optimization of the hybridization time of the methylated SEPT9 target ssDNA to the probe DNA.

Methylated *SEPT9* probe DNA (125 pmol) was immobilized onto streptavidin-coated wells. The *SEPT9* methylated or unmethylated target ssDNA (125 pmol) was added to the well and incubated at 25°C for 30, 60, or 120 min. After washing the wells, 500 nM MBD-AcGFP1 was added and incubated at 25°C for 30 min. After washing the wells, fluorescence intensity of the bound MBD-AcGFP1 was measured (n = 4, mean ± SD).

Fig. S7 Optimization of the amount of the methylated SEPT9 probe DNA and target ssDNA.

Methylated *SEPT9* probe DNA (0.125, 1.25, 12.5, or 125 pmol) was immobilized onto streptavidin-coated wells. The *SEPT9* methylated target ssDNA (0.125, 1.25, 12.5, or 125 pmol) was added to the 0.125–125 pmol of corresponding methylated *SEPT9* probe DNA-immobilized wells and incubated at 25°C for 30 min. After washing the wells, 500 nM MBD-AcGFP1 was added and incubated at 25°C for 30 min. After washing the wells, fluorescence intensity of the bound MBD-AcGFP1 was measured (n = 4, mean ± SD).