Supporting information

Development and Evaluations of RPA-NFO-LFT and RPA-Cas12a-LFT Systems

for the Detection of Candida albicans

Chang Liu ^{a,b}, Xuechun Yao ^{e,f}, Chunlong Liu ^{a,e}, Shengping You ^{*,a,d}, Wei Qi ^{a,c,d}, and Mengfan Wang ^{*,b,d}

a. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.

b. School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.

c. The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China.

d. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China.

e. Dynamiker Biotechnology Sub-Center, Beijing Key Laboratory for Mechanism Study and Precision Diagnosis of Invasive Fungal Diseases, Tianjin 300467, China.

f. Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China

* Corresponding author: ysp@tju.edu.cn (S. You), <u>mwang@tju.edu.cn</u> (M. Wang)

Fig. S1 RPA product analysis after different purification treatments

As can be seen from the lane 1 and lane 2, the bands are heavily smeared at 3000 bp, indicating the appearance of a DNA-protein complex. Lane 3 and lane 4 reflected the dilution has few effects on the separation of DNA and protein. High temperature treatment is beneficial for the separation of amplicons from enzymes and proteins. The bands from the 90 °C treatment (lane 6) are significantly less concentrated than those from the 60 °C treatment (lane 5), because high temperature denatures the amplicons into single strands that cannot be detected by electrophoresis. In lanes 8 and 9, high temperature denaturation followed by dilution obviously restrains the smearing, but also leads to the reducing of RPA product. The SDS treated samples were shown in Lane 11 to 14. Although it is the most effective in eliminating the smearing, the interference band above the target is inevitable, especially when the amplicon is long. Therefore, the 60 °C treatment was finally chosen as the post-processing method for the characterization of RPA product.

Fig. S2

Fig. S2 Results of secondary structure energy calculations for primers and probes

Fig. S3

Fig. S3 Bare test strips and finished test strips after shelling.

Fig. S4

Amplification curves of qPCR assay for interference samples, curves of the same color at the same concentration represent duplicate experiments, and curves of different colors represent parallel samples. The six curves were highly overlapping at a concentration of 10⁵ CFU/ml and the assay was very stable, with increasing fluctuations in fluorescence values as the sample concentration decreased. Lower limit of detection up to 10^3 CFU/ml in 45 cycles, and the trend of the curve shows that increasing the number of cycles should allow the detection of lower concentrations. Theoretically, the CT value detected by qPCR should increase by 3.16 when the sample concentration decreases by a factor of 10. However, the mean CT value of samples tested at 10^4 CFU/ml increased by 3.76 compared to that of 10⁵ CFU/ml under the influence of serum background. When testing samples with 10³ CFU/ml concentration, one duplicate well showed negative, and after excluding this data, the mean CT value of samples with 10^3 CFU/ml concentration was calculated and found to be increased by 4.42 compared to the mean CT value of 10⁴ CFU/ml. Background nucleic acids reduced the amplification efficiency of qPCR to some extent and the lower the concentration of the sample, the greater the effect on the amplification efficiency.

```
Fig. S5
```


Fig. S5 Results of qPCR and RPA-NFO/Cas12a-LFT on 18 simulation samples.
(a) Ct values of qPCR assay for 18 samples, with one replicate experiment for each sample. (b, c, d) Results of qPCR, RPA-NFO-LFT, and RPA-Cas12a-LFT on 18 samples tested for negative and positive readings, with green as negative and red as positive.

Name	Forward Primer (5'->3')	Reverse Primer (5'->3')		
ITS1-2-3	GGGCCCAGCCTGCCGCCAGAGGT CTAAACTTAC	CAAAGCGATCCCGCCTTACCACTA CCGTCT		
ITS1-2-2	GGCCCAGCCTGCCGCCAGAGGTC TAAACTTACA	AAAGCGATCCCGCCTTACCACTAC CGTCTT		
ITS1-2-1	GCCCAGCCTGCCGCCAGAGGTCT AAACTTACAA	AAGCGATCCCGCCTTACCACTACC GTCTTT		
ITS1-2+1	CCAGCCTGCCGCCAGAGGTCTAA ACTTACAACC	GCGATCCCGCCTTACCACTACCGT CTTTCA		
ITS1-2+2	CAGCCTGCCGCCAGAGGTCTAAA CTTACAACCA	CGATCCCGCCTTACCACTACCGTC TTTCAA		
ITS1-2+3	AGCCTGCCGCCAGAGGTCTAAAC TTACAACCAA	GATCCCGCCTTACCACTACCGTCT TTCAAG		

Table S1 Mismatch screening primer sequence

		1	1 / 1		i			
Step	Temperature (°C)		Data collection	Time	Number of cycles	Analysis Mode		
Pre- denaturation	95		None	2 min	1	None		
D ()	95		None	10 sec	45	Quantification		
Extension	60		Single	40 sec	43			
Cooling	37		None	10 sec	1	None		
Name		Sequence (5'->3')						
Forward Primer		GGATCTCTTGGTTCTCGCATC						
Reverse Primer		GTAGTCCTACCTGATTTGAGGTC						
Probe		HEX-GCCATTGTCAAAGCGATC-BHQ1						

	DOD	1	•	1	1	
Table N2 of	IPCR	procedure	nrimer	and	nrohe sec	mence
	μ OIC	procedure,	primer	unu	p1000 500	lacitor

PCR reactions included 0.5 μ l (10 μ M) of forward primer, reverse primer and probe, 5 μ l of AptaTaq Genotyping Master (Roche), 5 μ l of template, and 13.5 μ l of water.