A ratiometric fluorescence sensor based on gold silver nanoclusters and tungsten

disulfide quantum dots with simple fabrication for the detection of copper ions in

river water

Zhiya Wang ^a, Rong Liu ^{a,b*}, Zhifang Fu ^a, Xin Yi ^a, Yongjun Hu ^{a*}, Changhui

Liu^a, Dong Pan^c, Zhaoyang Wu^{b*}

^a Hunan Provincial Key Lab of Dark Tea and Jin-hua, College of Chemistry and Material Engineering, Hunan

City University; Yiyang, 413000, P. R. C

^b State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical

Engineering, Hunan University, Changsha 410082, P. R. C

^c Zhejiang Addenda Advance Energy Material Co. LTD, Huzhou 313000, P. R. C

Fig.S1 The photostability of WS QDs with irradiation under a 300 W Xe lamp for 0.5 h.

Fig.S2 The fluorescence intensity of WS₂ QDs over the NaCl concentration range of 0 to 100 mM.

Fig.S3 Photographs of AuAgNCs under visible light (left) and 365 nm UV (right).

Fig.S4 The zeta potential of AuAgNCs.

Fig.S5 Fluorescence spectra of fixing the concentration of WS₂-QDs and changing the concentration of MUA-AuAgNCs (A) and of fixing the concentration of MUA-AuAgNCs and changing the concentration of WS₂-QDs (B).

Fig.S6 The stability of this ratiometric probes of NCs/QDs.

Fig.S7 UV-vis of NCs without Cu^{2+} (curve a) and with the addition of 10 μ M Cu^{2+} (curve b).

Fig.S8 Fluorescence intensity decay curves of NCs without Cu2+, adding 4 and 10 μM Cu^{2+}.

$Cu^{2+}(\mu M)$	α_1	$\tau_{l}(\mu s)$	α2	$\tau_2(\mu s)$	χ^2	$\tau_{avg}{}^{l}(\mu s)$
0	94.99	1.79	5.01	6.51	0.9995	2.55
4	99.38	1.35	0.62	6.35	0.9995	1.46
10	92.21	1.08	7.79	0.18	0.9784	1.06
1: $\tau_{avg} = \frac{\alpha_1 \tau_1^2 + \alpha_2 \tau_2^2}{\alpha_1 \tau_1 + \alpha_2 \tau_2}$						

Table.S1 The fluorescence decay lifetime of NCs in different concentration of Cu²⁺.

Fig.S9 I_{QDs} (horizontal bars) and I_{NCs} (diagonal bars) and the ratio of I_{NCs}/I_{QDs} (grid column) without Cu^{2+} ions.

