Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2023

Supplementary Data

For

Graphene quantum dots incorporated NiAl₂O₄ nanocomposite based molecularly

imprinted electrochemical sensor for 5-hydroxymethyl furfural detection in coffee

samples

Hatice Ebrar Turan^a, Hilal Medetalibeyoglu^b, İlknur Polat^a, Bahar Bankoğlu Yola^c, Necip Atar^d, Mehmet Lütfi Yola^{a*}

^aHasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey

^bKafkas University, Faculty of Science and Letters, Department of Chemistry, Kars, Turkey

^cGaziantep Islam Science and Technology University, Faculty of Engineering and Natural Sciences, Department of Engineering Basic Sciences, Gaziantep, Turkey

^dPamukkale University, Faculty of Engineering, Department of Chemical Engineering, Denizli, Turkey

* To whom correspondence should be addressed:

E-mail: <u>mlutfi.yola@hku.edu.tr</u>

Tel.: +903422118080 Fax: +903422118081

Apparatus

ZEISS EVO 50 SEM, JEOL 2100 TEM, Bruker-Tensor 27 FTIR spectrometer and a PHI 5000 Versa Probe type x-ray photoelectron spectrometer were used for SEM, TEM, FTIR and XPS measurements, respectively.

GCE cleaning procedure

Surface cleaning of GCE electrodes was done using solutions containing alumina. These solutions are in different diameter sizes (0.1 μ m and 0.05 μ m) and the particles on the surface were removed by the interaction of the electrodes with these solutions, respectively. After these solutions of different sizes were dripped onto the electrodes, cleaning processes were started with the help of electrode cleaning pads (grain size 4000). After the interaction with the solutions was completed, the electrodes were sonicated twice with ultrapure water and isopropyl alcohol, respectively. Finally, it was dried at room temperature and made ready for use.

Linearity

$$LOQ = 10.0 S / m$$
$$LOD = 3.3 S / m$$

S: Standard deviation of the intercept and m. Slope of the regression line

Fig. S1. SEM image of GQDs-NiAl₂O₄ nanocomposite

Fig. S2. SEM-EDX mapping of (A) nickel, (B) aluminum, (C) oxygen and (D) carbon elements on GQDs-NiAl₂O₄ nanocomposite

Fig. S3. (A) 100.0 mM Py polymerization containing 25.0 mM HMF on GQDs-NiAl₂O₄/GCE (Scan rate: 100 mV s⁻¹), (B) SWVs of the prepared electrodes in this study: (a) MIP/GQDs-NiAl₂O₄/GCE in blank buffer solution (pH 11.0), (b) NIP/GQDs-NiAl₂O₄/GCE after rebinding of 5.0 ng L⁻¹ HMF in 0.1 M PBS (pH 11.0), (c) MIP/GQDs-NiAl₂O₄/GCE after rebinding of 5.0 ng L⁻¹ HMF in 0.1 M PBS (pH 11.0) (Parameters are frequency of 100 Hz, pulse amplitude of 25 mV, scan increment of 5 mV), (C) SWVs of different molecularly imprinting electrodes after rebinding of 5.0 ng L⁻¹ HMF in 0.1 M PBS (pH 11.0) HMF in 0.1 M PBS (a) MIP/NiAl₂O₄/GCE, (b) MIP/GQDs/GCE, (c) MIP/GQDs-NiAl₂O₄/GCE (Parameters are frequency of 100 Hz, pulse amplitude of 25 mV, scan increment of 5 mV)

Fig. S4. The proposed electro-reduction mechanism for HMF at MIP/GQDs-NiAl₂O₄/GCE

3.4. Optimization studies

3.4.1. pH effect

The pH effect is an important factor that affects the sensor signals depending on the ambient conditions. When we looked at Fig. S5A, the sensor signal values increased up to pH 11.0 Thus, 11.0 was chosen as the ideal pH.

3.4.2. Mole ratio HMF to Py monomer effect

Secondly, mole ratio HMF to Py monomer effect was investigated (Fig. S5B). In the preparation of molecularly imprinted sensors, it is necessary to carefully adjust the monomer ratio. There is a high probability of non-specific interactions in large proportions of monomer concentrations. At low monomer concentrations, the number of binding sites of the analyte molecule is low and significantly affects the sensitivity of the sensor. The highest sensor signal appears to be obtained when using 100.0 mM Py and 25.0 mM HMF.

3.4.3. Desorption time effect

It is very important to completely remove the analyte molecule from the electrode surface in the preparation of molecularly imprinted sensors. In the case of sensor preparation, the adsorption-desorption kinetics primarily affects the performance of the sensor. Consequently, a good optimization of the elution time is required. Several desorption times were tried for optimization and the most optimal signal value was obtained at 20 min (Fig. S5C).

3.4.4. Scan cycle effect

The thickness of the prepared electrode surface is very important in electrochemical sensor applications. Film thickness is an important factor that directly affects sensor performance. During the sonication process on the electrode surface with low film thickness, it is likely that the nanocomposite material will break off from the electrode surface. Therefore, molecularly imprinted electrodes with different film thickness were prepared and the highest signal was obtained in the electrode with 20th scan cycle (Fig. S5D).

Fig. S5. Effect of (A) pH, (B) mole ratio, (C) desorption time, (D) scan cycle on signals of SWVs (in presence of 5.0 ng L^{-1} HMF) (n = 6)

Table S1. Recovery results of HMF ((n=6)
-------------------------------------	-------

Sample	Added HMF (ng L ⁻¹)	Found HMF (ng L ⁻¹)	*Recovery (%)
Coffee	-	1.071 ± 0.003	-
	2.000	3.073 ± 0.006	100.07 ± 0.01
	5.000	6.069 ± 0.002	99.97 ± 0.03
	8.000	9.070 ± 0.008	99.99 ± 0.01

*Recovery = Found HMF, ng L^{-1} / Real HMF, ng L^{-1}

	MIP		NIP		
	ΔΙ (μΑ)	*k	ΔΙ (μΑ)	*k	**k′
HMF	10.00	-	0.50	-	-
5-MT	0.50	20.00	0.30	1.67	12.20
FUR	0.40	25.00	0.20	2.50	10.00
GLU	0.30	33.33	0.15	3.33	10.10
AA	0.20	50.00	0.10	5.00	10.00
MGO	0.10	100.00	0.05	10.00	10.00

Table S2. k and k' values of HMF imprinted electrodes (MIP/GQDs-NiAl₂O₄/GCE and NIP/GQDs-NiAl₂O₄/GCE)

Analyte concentrations: 5.0 ng L⁻¹ HMF, 500.0 ng L⁻¹ 5-MT, 500.0 ng L⁻¹ FUR, 500.0 ng L⁻¹ GLU, 500.0 ng L⁻¹ AA and 500.0 ng L⁻¹ MGO; $*k = \Delta I_{HMF} / \Delta I_{interfering chemical}$ and $**k' = k_{MIP} / k_{NIP}$

Fig. S6. SWVs of (A) MIP/GQDs-NiAl₂O₄/GCE and (B) NIP/GQDs-NiAl₂O₄/GCE in 5.0 ng L^{-1} HMF, 500.0 ng L^{-1} 5-MT, 500.0 ng L^{-1} FUR, 500.0 ng L^{-1} GLU, 500.0 ng L^{-1} AA and 500.0 ng L^{-1} MGO (Parameters are frequency of 100 Hz, pulse amplitude of 25 mV, scan increment of 5 mV)

Fig. S7. Stability test of MIP/GQDs-NiAl₂O₄/GCE including 5.0 ng L⁻¹ HMF (n = 6)