Supporting Information

A fluorescent probe based on enhanced ICT effect for Hg²⁺

detection and cell imaging

Shuchen Pei^a, Chaozheng Li^a, Xinyu Pei^a, Xiangyang Zhang^b, Yuting Chi^a, Wenhong Zeng^a, Yuanyuan Zhang^c, Xiaoling Liao^{*c} and Jun Chen^{*a}

^a School of Chemistry and Chemical Engineering, Chongqing University of Science and

Technology, Chongqing, 401331, China.

^b College of Chemistry and Chemical Engineering, Hunan University of Arts and Science,

Changde 415000, China

° School of Metallurgy and Materials Engineering, Chongqing University of Science and

Technology, Chongqing, 401331, China.

* Corresponding authors: E-mail address: wxchenjun@163.com

Fig. S1 ¹H NMR spectrum of YF-OH (400 MHz, CDCl₃).

Fig. S2 ¹H NMR spectrum of YF-Cl-OH (400 MHz, CDCl₃).

Fig. S3 ¹H NMR spectrum of YF-Hg (400 MHz, CDCl₃).

Fig. S4 ¹³C NMR spectrum of YF-Hg (101 MHz, CDCl₃).

Fig. S5 ¹H NMR spectrum of YF-Cl-Hg (400 MHz, CDCl₃).

Fig. S6 ¹³C NMR spectrum of YF-Cl-Hg (101 MHz, CDCl₃).

Fig. S7 Comparison of ¹H NMR YF-Cl-Hg+Hg²⁺ with YF-Cl-Hg and YF-Cl-OH.

Fig. S8 Structure of YF-Cl-Hg.

Fig. S9 Structure of YF-Cl-OH.

Fig. S10 Structure of YF-Cl-O⁻.

Fig. S11 Structure of YF-Hg.

Fig. S12 Structure of YF-OH.

Fig. S13 Structure of YF-O⁻.

Fig. S14 Molecular front orbital diagrams of YF-H-Hg, YF-H-OH and YF-H-O-.

Fig. S15 Absorption spectra of YF-Hg in pH buffer (pH=8, contained 50% DMF) in the absence and presence of Hg^{2+} (100 μ M).

As shown in Fig. 3a, the UV absorption of **YF-Hg** after responding to Hg^{2+} is only weakly red-shifted. It indicates that the HOMO-LUMO energy gap of its structure formed in response to Hg^{2+} should be slightly reduced, which is basically consistent with the DFT calculation results in Fig S14.

Meanwhile, the UV absorption spectra of **YF-Hg** at pH=8 in response to Hg^{2+} were measured. As shown in Figure S15, there is a large red shift in the UV absorption of **YF-Hg** after responding to Hg^{2+} at pH=8, which implies the formation of a **YF-O**⁻ structure.

Probe	References	LOD for Hg ²⁺	Stocks shift (nm)	λem	Cell imaging
S ^{CH2OH} S ^{CH2OH}	1	1.03 × 10 ⁻⁹ mol/L	62 nm	457 nm	yes
S S H	2	$5.0 imes 10^{-6} \text{ mol/L}$	112 nm	412 nm	-
OH S N S	3	1.59 × 10 ⁻⁸ mol/L	103 nm	552 nm	yes
NC CN	This work	5.82 × 10 ⁻⁷ mol/L	149 nm	659 nm	yes

Table. S1 Comparison of YF-Cl-Hg with other dithioacetal-based Hg²⁺ fluorescent probes.

Notes and references

- 1. Y. Y. Gao, T. T. Ma, Z. Z. Ou, W. J. Cai, G. Q. Yang, Y. Li, M. H. Xu and Q. Q. Li, *TALANTA*, 2018, **178**, 663-669.
- 2. J. Prabhu, K. Velmurugan and R. Nandhakumar, Journal of Luminescence, 2014, 145, 733-736.
- 3. Y. Zhou, X. He, H. Chen, Y. Wang, S. Xiao, N. Zhang, D. Li and K. Zheng, *Sensors and Actuators B: Chemical*, 2017, 247, 626-631.