Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2023

Supplementary materials

Journal name

Analytical Methods

Article title

A robust multi-residue method for the monitoring of 25 endocrine disruptors at ultra-trace levels in surface waters by SPE-LC-MS/MS

Authors

Andrej Grobin, Robert Roškar*, Jurij Trontelj* University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia Tel: +386 1 4769 500, Fax: +386 1 4258 031 e-mail: robert.roskar@ffa.uni-lj.si ; jurij.trontelj@ffa.uni-lj.si

Contents

Fig. S1 Chemical structures of selected substances

Fig. S2 Reaction of dansylation shown on BPA

Fig. S3 Signal intensity comparison expressed as slopes of calibration curves of derivatized analytes in relation to variations in derivatization parameters

Fig. S4 Derivatization signal gain shown on an example of E2 derivatization

Fig. S5 Representative chromatograms used in calculations of signal to noise values for each non-derivatized analyte at their LOQ value

Fig. S6 Representative chromatograms used in calculations of signal to noise values for each derivatized analyte (denoted by -D) at their LOQ value

Table S1 Analytical articles with similar analytes found in recent literature and their validation parameters**Table S2** Mass spectrometry parameters for non-derivatized analytes

Table S3 Mass spectrometry parameters for derivatized analytes

Table S4 Concentrations (ng/L) of calibrators and QC samples

Table S5 Concentration ranges of analytes in the non-derivatized and derivatized method

Table S6 Comparison of extraction efficiencies and precisions from different SPE cartridges expressed as percentages

Table S7 Comparison of extraction efficiencies and precisions of representative analytes at different loading volumes and flow rates, expressed as percentages

Table S8 Values of acceptance parameters of calibrator samples on the limit of quantitation

Table S9 Comparison of matrix effect in drinking water and river water calculated with and without taking into account the addition of internal standards

Table S10 Autosampler stability after 24 and 48 h at 8 °C, expressed as a percentage (%) compared to the signal at t=0 h

Table S11 Concentrations (ng/L) from three representative surface water samples calculated directly and by standard addition

Fig. S1 Chemical structures of selected substances

Fig. S2 Reaction of dansylation shown on BPA

Reaction temperature

Fig. S3 Signal intensity comparison expressed as slopes of calibration curves of derivatized analytes (with standard deviation error bars) in relation to variations in derivatization parameters

Fig. S4 Derivatization signal gain shown on an example of E2 derivatization. Both peaks represent a sample of a comparable concentration with the one with r_t =3.6 min being the derivatized E2 (E2-D) and the peak with r_t =5.3 min the non-derivatized E2

Fig. S5 Representative chromatograms with signal intensities used in calculations of signal to noise (S/N) values for each non-derivatized analyte at their LOQ value. The S/N values for each analyte are as follows: BPS 37, BPF 23, estriol 21, BPE 49, BPA 44, BPAF 27, BPB 41, BPC 27, estradiol 46, ethinylestradiol 56, BPAP 55, BPZ 39, corticosterone 32, dienogest 30, estrone 22, testosterone 14, norethindrone 37, tibolone 10, BPG 19, gestodene 59, cyproterone 205, norgestrel 21, chlormadinone 34, drospirenone 22, progesterone 17

Fig. S6 Representative chromatograms with signal intensities used in calculations of signal to noise (S/N) values for each derivatized analyte (denoted by -D) at their LOQ value. The S/N values for each analyte are as follows: estriol-D 30, ethinylestradiol-D 17, estradiol-D 58, estrone-D 42, BPS-D 77, BPAF-D 144, BPF-D 24, BPE-D 44, BPA-D 1857, BPB-D 51, BPC-D 18, BPG-D 32, BPAP-D 67, BPZ-D 52

Tables

Table S1 Analytical articles with similar analytes found in recent literature and their validation parameters

Source	Number of common / all analytes in the method (with groups) [#]	Linear range [ng/L]	LOQ values [ng/L]	Method of LOQ value determination	Analysis time [min]
(Goeury et al., 2022)	10 / 15 (NH, SH, BPA)	0.3 - 200	0.3 - 1.5	extrapolated [§]	10
(Chafi and Ballesteros, 2022)	8 / 13 (NH, SH)	0.04 - 800	0.03 - 1.0	extrapolated	15
(H. Wang et al., 2022)	9 / 10 (BP)	5000 - 200000	5.6 - 19.3	extrapolated	30
(Q. Wang et al., 2022)	7 / 7 (BP)	1000 - 500000	0.2 - 6	extrapolated	8
(Mirmont et al., 2021)	10 / 23 (NH, SH)	0.25 - 62.5	0.035 - 0.5	extrapolated from 5 ng/L spiked sample	$9 + 8^{(1)}$
(Corrêa et al., 2021)	5 / 12 (NH, SH, BPA)	2500 - 150000	3.6 - 14.4	extrapolated	N.D. (>25)
(Li et al., 2021)	5 / 6 (NH, SH, BPA)	N.D 800	8.3 - 64.1	extrapolated	10
(Glineur et al., 2020)	4 / 4 (NH)	0.1 - 5.0	0.020 - 0.097	extrapolated from low-level samples	N.D. (>20)
(Merlo et al., 2020)	4 / 7 (NH)	10000 - 150000	0.5 - 30	extrapolated from calibrators	27
(Čelić et al., 2020)	4 / 13 (NH, BPA)	0.1 - 500	0.10 - 0.21	extrapolated from 5 ng/L spiked sample	10.5
(Farounbi and Ngqwala, 2020)	3 / 10 (NH, BPA)	N.D.	1.0 - 3.0	N.D.*	N.D.
(Huang et al., 2020)	7 / 15 (BP)	0.1 - 1000000	0.15 - 2.24	extrapolated from 100 ng/L spike	6.5
(Schmidt et al., 2020)	6 / 6 (BP)	N.D.	0.1 - 5.0	extrapolated from lowest calibrator	20
(Tang et al., 2020)	3 / 11 (NH)	10000 - 200000	7.8 - 19.8	extrapolated from 10 ng/L spike	37
(Barreca et al., 2019)	3 / 3 (NH)	3.5 - 224	0.035 - 0.1	extrapolated from low-level samples	8
(Toušová et al., 2019)	4 / 5 (NH)	N.D.	0.2 - 3	N.D.	25
(Ashfaq et al., 2019)	4 / 9 (NH)	N.D.	2.5	N.D.	N.D. (>30)
(Hu et al., 2019)	5 / 8 (NH, BPA)	N.D.	0.1 - 5.7	extrapolated	N.D.
(Luo et al., 2019)	9 / 21 (NH, SH, BPA)	100 - 100000	0.17 - 0.93	N.D.	20 + 26
(Zhang et al., 2019)	5 / 7 (NH)	N.D.	0.03 - 0.24	N.D.	12
(Wee et al., 2019)	6 / 16 (NH, BPA)	5000 - 200000	0.02 - 0.35	extrapolated	$10 + 13^{(2)}$
(Rico et al., 2019)	4 / 32 (NH, BPA)	N.D.	30 - 300	extrapolated	36 + 18 ⁽²⁾
(Zheng et al., 2019)	6 / 6 (BP)	1000 - 200000	0.53 - 11.1	extrapolated	5
(Česen et al., 2019)	9 / 30 (NH, BP)	1 - 500	0.07 - 3.5	extrapolated from standard line slopes	39.3
(Xu et al., 2019)	5 / 91 (NH, SH, BPA)	200 - 200000	0.05 - 0.49	extrapolated	$19 + 8^{(2)}$
(Šauer et al., 2018)	7 / 17 (NH, SH)	0.1 - 200	0.06 - 0.51	signal as 1/4 of lowest calibrator (RSD ${<}30\%$)	22.5
(Weizel et al., 2018)	6 / 60 (SH)	50 - 50000	0.05 - 0.5	extrapolated	35 +35(2)
(Wang et al., 2018)	6 / 7 (BP)	N.D.	5.0 - 20	extrapolated	N.D. (>40)

Note: #. Analyte groups of natural hormones (NH), synthetic hormones (SH), bisphenols (BP) or bisphenol A (BPA). \$. Concentration of sample from which the LOQ value was calculated not reported. *. N.D. denotes that the data or calculation method was non-described. (1). Two different mobile phases were used. (2). Two different analytical columns and mobile phases were used.

Compound Name	Retention time [min]	Corresponding internal standard	Polarity	Precursor Ion [m/z]	Product Ion [m/z]	Fragmentor [V]	Collision Energy [eV]
BPS	1.0	[¹³ C ₆]-carbamazepine	-	249.0	108.0 ^a (92.1) ^b	164	29 ^a (41) ^b
BPF	2.5	[13C6]-carbamazepine	-	199.1	77.1 (105.1)	138	25 (21)
estriol	2.7	[¹³ C ₆]-carbamazepine	-	287.2	171.1 (145.0)	180	40 (48)
BPE	3.1	[¹³ C ₆]-carbamazepine	-	213.1	198.1 (119.1)	90	17 (25)
BPA	3.6	[13C6]-carbamazepine	-	227.1	212.1 (133.1)	148	17 (21)
[¹³ C ₆]-carbamazepine*	3.7	/	+	243.1	199.9	103	12
[¹³ C ₆]-diclofenac*	4.1	/	+	302.1	220.0	100	15
BPAF	4.4	[¹³ C ₆]-diclofenac	-	335.0	265.1 (69.0)	174	21 (53)
BPB	4.6	[13C ₆]-diclofenac	-	241.1	212.1 (93.0)	130	17 (57)
BPC	5.2	[¹³ C ₆]-diclofenac	-	255.1	240.1 (147.1)	154	17 (29)
estradiol	5.3	[¹³ C ₆]-diclofenac	-	271.2	183.2 (269.2)	180	44 (36)
ethinylestradiol	5.5	[13C ₆]-diclofenac	-	295.2	145 (159.1)	192	36 (36)
BPAP	6.2	[² H ₅]-diazepam	-	289.1	274.1 (195.1)	130	18 (26)
BPZ	6.7	[² H ₅]-diazepam	-	267.1	173.1 (145.1)	174	25 (41)
corticosterone [§]	6.8	[² H ₅]-diazepam	+	347.2	121.2 (77.2)	110	21 (77)
dienogest [§]	7.0	[² H ₅]-diazepam	+	312.2	91.1 (161.2)	170	65 (21)
estrone	7.2	[² H ₅]-diazepam	-	269.1	145 (143.2)	136	44 (64)
[² H ₅]-diazepam*	7.9	/	+	290.1	198.1	140	32
testosterone ^{\$}	8.4	[² H ₄]-testosterone	+	289.4	97.0 (109.0)	116	20 (24)
[² H ₄]-testosterone*	8.4	/	+	293.2	98.1	100	20
norethindrone [§]	8.5	[² H ₄]-testosterone	+	299.2	77.1 (91.1)	180	76 (52)
tibolone ^{\$}	8.8	[² H ₄]-testosterone	+	313.2	295.2 (65.2)	140	4 (100)
BPG	9.1	[² H ₄]-testosterone	-	311.2	295.1 (175.1)	180	28 (37)
gestodene ^s	9.3	[² H ₄]-testosterone	+	311.2	109.1 (77.3)	80	25 (73)
cyproterone [§]	9.4	[² H ₄]-testosterone	+	374.2	321.3 (43.2)	170	13 (53)
norgestrel [§]	10.4	[² H ₄]-testosterone	+	313.2	77.2 (91.2)	140	80 (53)
chlormadinone ^{\$}	12.0	[² H ₉]-progesterone	+	405.2	309.2 (345.2)	80	9 (5)
drospirenone ^s	12.1	[² H ₉]-progesterone	+	367.2	77.1 (91.1)	100	92 (72)
progesterone ^{\$}	12.3	[2H9]-progesterone	+	315.2	109.2 (97.2)	140	25 (21)
[² H ₉]-progesterone*	12.3	/	+	324.3	100.1	100	24

Table S2 Mass spectrometry parameters for non-derivatized analytes

Note. Both MS1 and MS2 resolutions are 2.5 units for all analytes. *. Denoted analyte is an internal standard. \$. Denoted analyte has a positive ionization polarity and is only quantified with the method for non-derivatized analytes. All other analytes are quantified with both methods. a. Value for the Quantifier ion. b. Value for the Qualifier ion.

Compound Name	Retention time [min]	Corresponding internal standard	Polarity	Precursor Ion [m/z]	Product Ion [m/z]	Fragmentor [V]	Collision Energy [eV]	MS1 resolution	MS2 resolution
estriol-D°	2.3	[² H ₄]-estriol-D	+	522.2	171.2 ^a (156.1) ^b	196	37 ^a (65) ^b	1.2	2.5
[² H ₄]-estriol-D*	2.3	/	+	526.2	171.2	196	37	0.7	2.5
ethinylestradiol-D	3.5	[² H ₄]-ethinylestradiol-D	+	530.2	171.2 (156.1)	200	37 (65)	1.2	2.5
[² H ₄]-ethinylestradiol-D*	3.5	/	+	534.2	171.2	200	37	0.7	2.5
estradiol-D	3.6	[2H5]-estradiol-D	+	506.2	171.2 (156.1)	196	33 (61)	0.7	2.5
[² H ₅]-estradiol-D*	3.6	/	+	511.2	171.2	196	33	0.7	2.5
estrone-D	4.4	[² H ₄]-estrone-D	+	504.2	171.2 (156.1)	92	37 (57)	1.2	2.5
[² H ₄]-estrone-D*	4.4	/	+	508.2	171.2	92	37	0.7	2.5
BPS-D	5.0	[² H ₁₆]-BPA-D	+	717.1	171.2 (156.1)	246	41 (80)	0.7	2.5
BPAF-D	5.6	[² H ₁₆]-BPA-D	+	803.2	171.2 (156.1)	246	53 (80)	0.7	2.5
BPF-D	6.0	[² H ₁₆]-BPA-D	+	667.2	171.2 (156.1)	192	41 (77)	0.7	2.5
BPE-D	6.6	[² H ₁₆]-BPA-D	+	681.1	171.2 (156.1)	220	44 (82)	0.7	2.5
BPA-D	7.2	[² H ₁₆]-BPA-D	+	695.2	171.2 (156.1)	246	53 (77)	0.7	0.7
[² H ₁₆]-BPA-D*	7.2	/	+	709.2	171.2	246	53	0.7	2.5
BPB-D	7.7	[² H ₁₆]-BPA-D	+	709.3	171.2 (156.1)	220	52 (86)	0.7	2.5
BPC-D	7.7	[² H ₁₆]-BPA-D	+	723.3	171.2 (156.1)	246	53 (80)	0.7	0.7
BPG-D	7.9	[² H ₁₆]-BPA-D	+	779.4	171.2 (156.1)	240	56 (92)	0.7	2.5
BPAP-D	8.3	[² H ₁₆]-BPA-D	+	757.4	171.2 (156.1)	250	54 (88)	0.7	2.5
BPZ-D	8.4	[² H ₁₆]-BPA-D	+	735.3	171.2 (156.1)	246	49 (77)	0.7	2.5

Table S3 Mass spectrometry parameters for derivatized analytes

Note. *. Denoted analyte is an internal standard. a. Value for the Quantifier ion. b. Value for the Qualifier ion. c. Analytes denoted with -D are derivatized with dansyl chloride.

Table S4 Concentrations (ng/L) of calibrators and QC samples. QC_L is the low and QC_H the high concentration QC sample. A.U. denotes arbitrary units, showing the concentration relations of each individual calibrator and QC level

								Ç	C
		Calibı	ators					sam	ples
								QCL	QC _H
A.U.	0.5	1.5	5	15	50	175	500	10	200
BPS	0.3	0.9	3	9	30	105	300	6	120
BPF	0.4	1.2	4	12	40	140	400	8	160
E3	0.075	0.23	0.75	2.25	7.5	26.3	75	1.5	30
BPE	0.3	0.9	3	9	30	105	300	6	120
BPA	0.3	0.9	3	9	30	105	300	6	120
BPAF	0.3	0.9	3	9	30	105	300	6	120
BPB	0.3	0.9	3	9	30	105	300	6	120
BPC	0.3	0.9	3	9	30	105	300	6	120
E2	0.4	1.2	4	12	40	140	400	8	160
EE2	0.075	0.23	0.75	2.25	7.5	26.3	75	1.5	30
BPAP	0.3	0.9	3	9	30	105	300	6	120
BPZ	0.2	0.6	2	6	20	70	200	4	80
corticosterone	0.85	2.55	8.5	25.5	85	298	850	17	340
dienogest	0.4	1.2	4	12	40	140	400	8	160
estrone	0.03	0.09	0.3	0.9	3	10.5	30	0.6	12
testosterone	0.1	0.3	1	3	10	35	100	2	40
norethindrone	0.75	2.25	7.5	22.5	75	263	750	15	300
tibolone	0.7	2.1	7	21	70	245	700	14	280
BPG	0.6	1.8	6	18	60	210	600	12	240
gestodene	0.55	1.65	5.5	16.5	55	193	550	11	220
cyproterone	1.25	3.75	12.5	37.5	125	438	1250	25	500
norgestrel	0.5	1.5	5	15	50	175	500	10	200
chlormadinone	3.5	10.5	35	105	350	1225	3500	70	1400
drospirenone	0.4	1.2	4	12	40	140	400	8	160
progesterone	0.1	0.3	1	3	10	35	100	2	40
E3-D	0.075	0.23	0.75	2.25	7.5	26.3	75	1.5	30
EE2-D	0.075	0.23	0.75	2.25	7.5	26.3	75	1.5	30
E2-D	0.4	1.2	4	12	40	140	400	8	160
E1-D	0.03	0.09	0.3	0.9	3	10.5	30	0.6	12
BPS-D	0.3	0.9	3	9	30	105	300	6	120
BPAF-D	0.3	0.9	3	9	30	105	300	6	120
BPF-D	0.4	1.2	4	12	40	140	400	8	160
BPE-D	0.3	0.9	3	9	30	105	300	6	120
BPA-D	0.3	0.9	3	9	30	105	300	6	120
BPB-D	0.3	0.9	3	9	30	105	300	6	120
BPC-D	0.3	0.9	3	9	30	105	300	6	120
BPG-D	0.6	1.8	6	18	60	210	600	12	240
BPAP-D	0.3	0.9	3	9	30	105	300	6	120
BPZ-D	0.2	0.6	2	6	20	70	200	4	80

Compound Name	Derivatized calibration range [ng/L]	Non-derivatized calibration range [ng/L]
BPS	0.3 - 105	0.3 - 300
BPF	0.4 - 140	4.0 - 400
E3	0.075 - 26	2.3 - 75
BPE	0.3 - 105	1.5 - 300
BPA	0.3 - 105	0.8 - 300
BPAF	0.3 - 105	1.5 - 300
BPB	0.3 - 105	1.5 - 300
BPC	1.5 - 105	9.0 - 300
E2	0.4 - 140	40 - 400
EE2	0.075 - 26	25 - 75
BPAP	0.3 - 105	0.4 - 300
BPZ	0.2 - 70	2.0 - 200
corticosterone	N.D.	0.9 - 850
dienogest	N.D.	0.4 - 400
E1	0.03 - 11	3.0 - 30
testosterone	N.D.	0.1 - 100
norethindrone	N.D.	0.8 - 750
tibolone	N.D.	2.0 - 700
BPG	0.6 - 210	6.0 - 600
gestodene	N.D.	0.55 - 550
cyproterone	N.D.	1.25 - 1250
norgestrel	N.D.	0.5 - 500
chlormadinone	N.D.	3.5 - 3500
drospirenone	N.D.	0.4 - 400
progesterone	N.D.	0.1 - 100

Table S5 Concentration ranges of analytes in the derivatized and non-derivatized method

Notes: N.D. analyte not suitable for derivatization.

Table S6 Comparison of recoveries (top) and precisions (bottom) from different SPE cartridges expressed as percentages (%). The recovery is calculated by comparing the slope obtained in the extraction with each cartridge and the slope of a standard solution of the same concentration

Recovery (%)																					
Strata X	E3 91	16 EE2	56 E2	표 91	Sdg 103	96 BPAF	86 BPF	PPA 84	DG 103	Zd8 102	6 corticosterone	06 dienogest	testosterone	6 norethindrone	£8 tibolone	96 gestodene	6 cyproterone	16 norgestrel	% chlormadinone	drospirenone	8 progesterone
Oasis HLB	99	93	90	91	100	96	95	92	98	85	97	83	97	87	61	89	97	86	80	123	44
Chromabond HR-X	81	88	86	74	81	76	87	76	78	82	89	74	86	79	74	88	76	69	64	120	49
Chromabond HLB	80	85	84	76	84	75	82	61	69	81	95	73	86	78	72	89	73	68	80	109	70
								Pre	cisio	on (%)										
	E3 E52 E2 E1 BPAF BPAF BPAF BPAF BPAF BPAF BPAF BPAF														progesterone						
Strata X	6	4	4	1	2	2	2	5	11	3	2	3	2	1	2	2	2	2	1	9	2
Oasis HLB	76	64	68	9	41	26	17	34	54	24	3	4	5	3	5	5	5	4	4	7	7
Chromabond HR-X	7	23	11	1	1	1	3	3	32	5	3	3	3	3	9	4	4	4	7	9	9
Chromabond HLB	13	24	8	5	10	8	2	5	44	5	6	8	3	4	17	5	6	6	4	13	2

Table S7 Comparison of recoveries (top) and precisions (bottom) of representative analytes at different loading volumes and flow rates, all expressed as percentages (%). The analytes missing in the table are synthetic hormones (except EE2) as they were added later in method development. Each condition was performed in 2 parallel experiments

						Recov	very (%)				
	BPS	BPF	E3	BPA	BPAF	BPC	E2	EE2	BPZ	E1	testosterone	progesterone
100 mL	94	84	83	118	64	103	88	104	54	100	63	69
200 mL	93	94	84	102	95	94	96	99	96	94	88	81
500 mL	92	97	82	94	96	99	82	81	92	94	78	79
700 mL	81	87	82	78	87	92	82	69	97	93	66	61
1000 mL	84	91	79	81	92	87	73	72	101	88	69	60
2.5 mL/min	99	77	86	108	103	64	97	81	94	113	71	75
5 mL/min	95	97	86	99	94	96	92	92	95	94	87	83
10 mL/min	100	112	33	95	84	73	104	73	66	86	77	77
20 mL/min	102	111	22	91	81	72	105	86	70	88	25	74
						Precis	sion (%))				
	BPS	BPF	E3	BPA	BPAF	BPC	E2	EE2	BPZ	E1	testosterone	progesterone
2.5 mL/min	0	5	10	6	8	15	3	8	10	3	6	3
5 mL/min	5	12	1	7	2	13	4	4	3	4	3	5
10 mL/min	2	20	17	13	1	25	7	6	23	8	10	15
20 mL/min	27	21	14	12	2	24	7	5	9	8	2	11

 Table S8 Values of acceptance parameters of calibrator samples at the limit of quantitation

	Analyte concentration [ng/L]	Signal to noise ratio	Signal to blank ratio	Precision [%]	Accuracy [%]
BPS	0.24	37	16	0	75
BPF	4.0	23	8.7	17	90
E3	2.25	21	55	2	96
BPE	1.5	49	19	2	126
BPA	0.84	44	5.6	9	153
BPAF	1.5	27	7.2	7	95
BPB	1.5	41	20	14	97
BPC	9.0	27	14	14	80
E2	40	46	16	1	77
EE2	26	56	23	17	71
BPAP	0.42	55	15	3	90
BPZ	2.0	39	6.6	2	79
corticosterone	0.68	32	39	38	74
dienogest	0.32	30	19	22	61
E1	3.0	22	40	18	61
testosterone	0.14	14	7.9	9	51
norethindrone	0.60	37	20	25	81
tibolone	1.96	10	7.8	10	87
BPG	6.0	19	5.6	12	146
gestodene	0.44	59	16	27	145
cyproterone	1.0	205	39	14	78
norgestrel	0.40	21	18	14	118
chlormadinone	2.8	34	8.3	18	63
drospirenone	0.32	22	8.8	15	66
progesterone	0.080	17	11	19	56

	Analyte concentration [ng/L]	Signal to noise ratio	Signal to blank ratio	Precision [%]	Accuracy [%]	
E3-D*	0.060	30	8.4	38	121	
EE2-D	0.060	17	7.7	24	121	
E2-D	0.32	58	17	24	55	
E1-D	0.084	42	5.5	10	119	
BPS-D	0.24	77	5.4	9	90	
BPAF-D	0.24	144	23	8	80	
BPF-D	0.32	24	32	16	114	
BPE-D	0.24	44	89	13	108	
BPA-D	0.24	1857	5.1	16	117	
BPB-D	0.24	51	27	11	72	
BPC-D	1.5	18	39	18	55	
BPG-D	0.48	32	12	13	55	
BPAP-D	0.24	67	12	6	109	
BPZ-D	0.16	52	18	17	100	

Table S9 Comparison of matrix effect in drinking water (DW) and river water (RW) calculated with and without taking into account the addition of internal standards

	Wi	th IS	With	out IS
	DW	RW	DW	RW
BPS	-9.4	-17.8	-5.3	-28.0
BPF	9.4	17.4	15.7	15.2
E3	5.9	22.2	9.6	21.7
BPE	6.5	24.2	11.9	31.1
BPA	0.3	17.1	5.7	24.9
BPAF	-5.8	20.9	-3.4	26.2
BPB	8.3	16.5	9.6	12.1
BPC	-12.0	19.6	15.5	25.3
E2	8.6	19.5	11.3	21.2
EE2	5.2	10.2	10.0	30.1
BPAP	-3.6	6.1	4.4	9.3
BPZ	-5.5	0.6	5.4	12.3
corticosterone	5.1	-13.4	7.9	-36.7
dienogest	-8.0	-20.6	-9.4	-28.0
E1	-1.3	21.0	7.6	-15.4
testosterone	-3.3	1.7	4.8	-21.4
norethindrone	-4.6	5.8	-11.9	-5.6
tibolone	6.0	10.7	11.3	-20.0
BPG	-17.6	14.0	-13.5	-33.7
gestodene	-3.1	8.3	5.0	-7.7
cyproterone	2.8	8.5	3.3	-21.3
norgestrel	-5.6	13.0	12.3	-32.3
chlormadinone	-2.4	12.3	4.7	-24.1
drospirenone	-7.6	6.5	14.2	-27.9
progesterone	-7.9	-0.6	23.0	-33.9
E3-D*	-5.3	0.5	14.8	-34.6
EE2-D	-2.1	23.4	-5.5	-14.6
E2-D	-10.5	-5.4	-11.5	-14.1
E1-D	6.2	13.7	12.5	-20.7
BPS-D	-1.8	-12.1	-10.2	-26.4
BPAF-D	9.7	-8.4	3.1	-14.7
BPF-D	-8.9	2.5	-16.2	7.9
BPE-D	-4.8	4.4	-13.1	9.1
BPA-D	-4.0	-1.8	-11.6	-4.5
BPB-D	0.0	1.8	-14.5	6.3
BPC-D	-10.1	20.2	-18.6	28.0
BPG-D	-17.1	22.7	-16.8	43.4
BPAP-D	9.9	-9.6	-20.2	-18.2
BPZ-D	1.7	-2.8	-17.7	-15.5

	BPS	BPF	E3	BPE	BPA	BPAF	BPB	BPC	E2	EE2	BPAP	BPZ	corticosterone	dienogest	El	testosterone	norethindrone	tibolone	BPG	gestodene	cyproterone	norgestrel	chlormadinone	drospirenone	progesterone
QC_L																									
24h	94.3	106.7	124.3	117.3	93.0	97.7	97.7	97.3	94.7	103.7	99.3	84.7	101.3	99.7	90.7	98.3	95.7	96.3	102.3	98.3	98.7	97.0	106.3	101.7	101.7
48h	106.3	111.7	98.7	100.7	110.0	98.3	104.3	98.3	102.7	108.3	103.7	85.0	102.7	102.3	79.3	98.7	101.0	100.0	111.3	98.3	97.3	94.3	104.7	101.7	98.3
$QC_{\rm H}$																									
24h	100.3	100.0	98.0	102.3	100.0	94.7	98.3	96.3	91.7	105.7	101.3	104.7	103.7	101.7	104.0	96.0	97.0	95.7	98.7	97.0	96.7	96.0	98.0	96.7	97.3
48h	103.3	101.0	104.7	102.0	100.3	108.0	96.3	101.0	94.7	103.0	97.3	103.0	101.7	101.3	101.7	99.0	99.0	102.7	98.7	97.7	99.3	94.0	94.0	92.0	91.0
	33-D	3E2-D	22-D	0-13	3PS-D	3PAF-D	3PF-D	3PE-D	3PA-D	3PB-D	3PC-D	3PG-D	3PAP-D	3PZ-D											
OC	ц	ц	н	щ	ц	ц	н	ц	ц	ц	ц	ц	н	н											
24h	93.7	96.0	96.0	104.3	95.0	94.3	98.3	97.7	97.0	102.0	102.7	97.3	115.7	114.3											
48h	100.3	98.7	96.3	108.7	108.7	103.3	110.3	103.3	95.0	104.3	95.0	101.3	115.3	110.7											
$QC_{\rm H}$																									
24h	103.3	100.0	100.0	99.7	98.3	96.7	98.7	100.3	100.0	103.0	103.7	104.7	114.3	114.0											
48h	100.3	98.0	97.3	101.7	97.3	94.7	97.3	96.0	93.0	97.7	96.7	100.0	103.7	111.0											

Table S10 Autosampler stability after 24 and 48 h at 8 °C, expressed as a percentage (%) compared to the signal at t=0 h. QC_L is the low and QC_H the high concentration QC sample

Table S11 Concentrations of detected analytes (ng/L) from three representative surface water samples calculated from calibration curves and by the standard addition principle. The quotient of values calculated from calibration curves divided by values obtained from standard addition is presented as a percentage (%)

	BPS	BPA	testosterone	norethindrone	norgestrel	drospirenone	progesterone	E3-D	EE2-D	E2-D	E1-D	BPS-D	BPF-D	BPA-D	BPG-D
CR	2.4	9.0	0.22	5.8	<loq< td=""><td>3.9</td><td>0.63</td><td>0.26</td><td><loq< td=""><td>0.23</td><td>4.0</td><td>2.4</td><td>0.55</td><td>10.2</td><td>1.1</td></loq<></td></loq<>	3.9	0.63	0.26	<loq< td=""><td>0.23</td><td>4.0</td><td>2.4</td><td>0.55</td><td>10.2</td><td>1.1</td></loq<>	0.23	4.0	2.4	0.55	10.2	1.1
BR	3.7	21	0.24	6.1	3.1	4.6	0.65	0.70	0.75	0.24	5.7	3.6	0.54	19.8	<loq< td=""></loq<>
LA	2.8	18	0.33	5.8	<loq< td=""><td>3.1</td><td>0.53</td><td>0.45</td><td><loq< td=""><td>0.24</td><td>5.4</td><td>2.9</td><td>0.69</td><td>16.3</td><td><lod< td=""></lod<></td></loq<></td></loq<>	3.1	0.53	0.45	<loq< td=""><td>0.24</td><td>5.4</td><td>2.9</td><td>0.69</td><td>16.3</td><td><lod< td=""></lod<></td></loq<>	0.24	5.4	2.9	0.69	16.3	<lod< td=""></lod<>
CR-A*	2.6	9.3	0.19	4.8	/	3.9	0.64	0.25	/	0.24	4.2	2.3	0.50	9.9	0.94
BR-A	3.7	18	0.23	6.8	3.0	4.2	0.58	0.80	0.63	0.26	5.0	3.5	0.49	16.5	0.32
LA-A	2.5	19	0.29	5.3	/	3.1	0.57	0.47	/	0.26	5.2	2.6	0.87	16.8	0.22
Comparison CR	91%	96%	113%	121%	/	100%	99%	106%	/	96%	95%	105%	109%	103%	117%
Comparison BR	101%	119%	105%	89%	104%	108%	113%	87%	119%	92%	113%	102%	111%	120%	/
Comparison LA	113%	93%	114%	109%	/	100%	92%	95%	/	94%	104%	110%	80%	97%	7
Comparison average	102%	103%	111%	106%	104%	103%	101%	96%	119%	94%	104%	106%	100%	107%	117%

Notes: CR clean river sample. BR burdened river sample. LA lake sample. *. Concentrations denoted with -A are calculated by the standard addition principle