# **Supporting Information**

#### Materials and chemicals

Levonorgestrel was purchased from Hubei Goto Biopharm Co., Ltd.  $H_2PtCl_6 \cdot 6H_2O$  and  $[Cu(CH_3CN)_4]PF_6$ , 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N-Hydroxysuccinimide (NHS) were purchased from Energy Chemical. Poly (styrene-*co*-maleic anhydride) (PSMA) was purchased from Macklin® Co., Ltd. 4-morpholineethanesulfonic acid (MES) was purchased from Aladdin® Co., Ltd. Monoclonal mouse antibodies for IL-6 (Ab1 and Ab2 recognize the different position of IL-6), goat anti-mouse IgG, IL-6 standard were purchased from Suzhou Hongxin Biotechnology Co., Ltd. sodium dodecyl sulfate (SDS) was purchased from Beijing Solarbio Science & Technology Co., Ltd.

#### Instrumentation

TEM images were acquired with a Tecnai G2 F20 S-TWIN transmission electron microscope and JOEL JEM-2100 (operated at an acceleration voltage of 200 kV). DLS and Zeta potential measurements were performed on a Horiba SZ-100 Nanoparticle Size Analyzer. UV-Vis spectroscopy was acquired using a TU-1901 double-beam UV-Vis spectrophotometer. Steady-state emission spectra of the compound were analyzed using a Horiba FluoroLog-3 spectrofluorometer. ESI-TOF-MS spectroscopy was conducted on an AB SciexX500R Q-TOF spectrometer. Fourier transform infrared (FT-IR) spectroscopy was conducted using a Bruker TENSOR 27 FT-IR spectrometer in the 1000–4000 cm<sup>-1</sup> region with KBr pellet method. Elemental analyses (EA) were carried out with a Perkin-Elmer 240 elemental analyser.

## Synthesis of Pt<sub>2</sub>Cu<sub>4</sub> cluster

Pt<sub>2</sub>Cu<sub>4</sub> cluster was prepared according to a previously reported method. 1 mL  $H_2PtCl_6 \cdot 6H_2O$  (6.25 µmol) dissolved in methanol was added to 0.5 mL levonorgestrel solution in CH<sub>2</sub>Cl<sub>2</sub>, followed by addition of 8 µL Et<sub>3</sub>N. 1 mL [Cu(CH<sub>3</sub>CN)<sub>4</sub>]PF<sub>6</sub> (4.6 mg, 12.5 µmol) in DCM was added, and then stirred for 2 h. The resultant suspension was centrifuged at 10000 rpm for 3 min, then allowed to evaporate slowly at room temperature to yield yellow strip crystals.

#### Preparation of carboxyl Pt<sub>2</sub>Cu<sub>4</sub> nanobeads (NBs)

15 mg PSMA and 5 mg  $Pt_2Cu_4$  cluster were dissolved in 5 mL DCM, then slowly added to 45 mL water containing 20 mg SDS for crushing with ultrasound at a power of 500W for 30 minutes. The obtained solution was stirred at room temperature for 12 h and centrifuged at 14,000 rpm for 10 min, then suspended in water. Carboxyl  $Pt_2Cu_4$  NBs was acquired by hydrolysis of the anhydride groups with addition of ammonia.

## Antibody conjugation to Pt<sub>2</sub>Cu<sub>4</sub>NBs (Pt<sub>2</sub>Cu<sub>4</sub>NBs-Ab1)

100  $\mu$ L carboxyl Pt<sub>2</sub>Cu<sub>4</sub>NBs in MES buffer (pH 5.0, 50 mM) was activated with addition of 10  $\mu$ L NHS (2 mg/mL) and 10  $\mu$ L EDC (2 mg/mL) for 30 min. The above solution was centrifuged and suspended in CBS buffer (pH 9.6, 50 mM), followed by addition of 5  $\mu$ L IL-6 Ab1 for 2 h. Then, 20  $\mu$ L 4% BSA solution was added and stirred for 2 h to block the surface of nanospheres, and centrifuged at 14,000 rpm for 15 min at 4 °C.

## Fabrication of Pt<sub>2</sub>Cu<sub>4</sub>-based immunochromatography test strips

The test strip consists of nitrocellulose membrane, sample pad and absorbent pad. The IL-6 antibody Ab2 and goat anti-mouse IgG was diluted to proper concentrations, filtered, and dispensed on test line (T line) and control line (C line) at a jetting rate of 1  $\mu$ L/cm respectively. The distance between T line and C line was approximately 10 mm, and the width of strip was allowed cutting to 4 mm.

### Lateral flow immunoassay for IL-6

 $20 \,\mu\text{L}$  sensing probe and  $80 \,\mu\text{L}$  sample with different concentrations of IL-6 were mixed in micro-well for 5 min reaction. Then, the strips were taken out for fluorescence imaging under UV light. Images were analyzed by image-J software to calculate the ratio of fluorescence intensity of test and control zones.

To evaluate specificity of the as-fabricated sensor, normal cytokines and proteins such as IL-12 , IL-10 , TNF- $\alpha$  , IFN- $\gamma$  , HSA and BSA were tested.

To verify the applicability of this method in serum samples, 100, 1000 and 5000 pg/mL IL-6 in bovine serum were tested.



Fig. S1. Hydrodynamic diameter of  $Pt_2Cu_4$ ,  $Pt_2Cu_4NBs$  without hydrolysis and  $Pt_2Cu_4NBs$ .



Fig. S2. Zeta potential of Pt<sub>2</sub>Cu<sub>4</sub>NBs without hydrolysis and Pt<sub>2</sub>Cu<sub>4</sub>NBs.



**Fig. S3.** Stability of  $Pt_2Cu_4NBs$  under (a) different temperatures, (b) different pH values, (c) different concentrations of NaCl solution, and (d) PBS for different time.  $d_h(C)$ ,  $d_h(pH)$ ,  $d_h(T)$ , and  $d_h(t)$  are the size of  $Pt_2Cu_4NBs$  in tested physiological environments, which was normalized to the DLS diameter ( $d_h$ ) of  $Pt_2Cu_4NBs$  in Milli-Q water at 25 °C, respectively.



Fig. S4. TEM-EDXS mapping for  $Pt_2Cu_4$  NBs.



Fig. S5. XPS analysis for Pt<sub>2</sub>Cu<sub>4</sub> (a-c) and Pt<sub>2</sub>Cu<sub>4</sub> NBs (d-f).



Fig. S6. The stability of UV-Vis absorption of Pt<sub>2</sub>Cu<sub>4</sub>NBs-Ab1.



Fig. S7. Optimization of amount of IL-6 Ab for conjugation.



Fig. S8. Optimization of different time of blocking.



**Fig. S9.** Fluorescence spectrum of T lines with addition of 0–1000 pg/mL IL-6 under 365 nm laser excitation.

| Sample                          | Element  | Calculated (%) | Experimental (%) |
|---------------------------------|----------|----------------|------------------|
| Pt <sub>2</sub> Cu <sub>4</sub> | Carbon   | 64.35          | 63.41            |
|                                 | Hydrogen | 6.94           | 6.97             |

Table S1. EA (%) data of  $Pt_2Cu_4$  clusters.

| <b>Table S2.</b> Comparison of different sensor platforms for the detection of IL-6. |                                                |                    |                             |                            |               |
|--------------------------------------------------------------------------------------|------------------------------------------------|--------------------|-----------------------------|----------------------------|---------------|
| Signal probe type                                                                    | Detection or<br>amplification<br>strategy      | Limit of detection | Incubation<br>time<br>(min) | Real<br>sample<br>analysis | Refere<br>nce |
| AuNP                                                                                 | LFICS                                          | 65.2<br>ng/mL      | 10                          | Serum                      | [1]           |
| Label free                                                                           | Voltammetric immunosensors                     | 4.8<br>pg/mL       | 30                          | Serum                      | [2]           |
| TiO <sub>2</sub> /CdS/CdSe                                                           | Photoelectro-<br>chemical                      | 0.38<br>pg/mL      | 60                          | /                          | [3]           |
| Thermal                                                                              | Functionalized<br>screen-printed<br>electrodes | 3.4<br>pg/mL       | 45                          | Plasma                     | [4]           |
| Au@Fe <sub>3</sub> O <sub>4</sub>                                                    | SERS                                           | 0.028<br>pg/mL     | 60                          | Serum                      | [5]           |
| AuNPs                                                                                | Electrochemical immunosensor                   | 0.654<br>pg/mL     | About 13 h                  | Serum                      | [6]           |
| Fluorescence<br>cluster                                                              | LFICS                                          | 42.66<br>pg/mL     | 15                          | Serum                      | This<br>work  |

| Sample | Spiked<br>concentration<br>(pg/mL) | Detect<br>concentration<br>(pg/mL) | Recovery (%) | CV(%) |
|--------|------------------------------------|------------------------------------|--------------|-------|
|        | 10                                 | 9.84±1.05                          | 98.1         | 8.53  |
| Serum  | 100                                | 96.79±6.16                         | 95.8         | 6.33  |
|        | 500                                | 491.01±56.84                       | 97.7         | 8.79  |

#### Table S3. Recovery of IL-6 in serum samples.

Table S4. Standard addition experiment of IL-6 in serum.

| Sample | Spiked<br>concentration | Detected<br>concentration | Calculation of<br>unknown | Calculated<br>value of |
|--------|-------------------------|---------------------------|---------------------------|------------------------|
|        | 20                      | 30.93±0.76                | 10.93±0.76                |                        |
| Serum  | 50                      | 58.79±1.39                | 8.79±1.39                 | 9.37±1.87              |
|        | 100                     | 108.39±3.48               | 8.39±3.48                 |                        |

[1] Yan Man, Xuefei Lv, Javed Iqbal, Guang Peng, Da Song, Congxiao Zhang, Yulin Deng. Microchip based and immunochromatographic strip assays for the visual detection of interleukin-6 and of tumor necrosis factor alpha using gold nanoparticles as labels. Microchimica Acta. 2015;182:597-604.

[2] Rocco Cancelliere, Alessio Di Tinno, Andrea Maria Di Lellis, Giorgio Contini, Laura Micheli, Emanuela Signori. Cost-effective and disposable label-free voltammetric immunosensor for sensitive detection of interleukin-6. Biosensors and Bioelectronics. 2022;213:114467.

[3] Gao-Chao Fan, Xiao-Lin Ren, Cheng Zhu, Jian-Rong Zhang, Jun-Jie Zhu. A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure. Biosensors and Bioelectronics. 2014;59:45-53.

[4] Robert D. Crapnell, Whitchuta Jesadabundit, Alejandro García-Miranda Ferrari, Nina C. Dempsey-Hibbert, Marloes Peeters, Ascanio Tridente, Orawon Chailapakul, Craig E. Banks. Toward the Rapid Diagnosis of Sepsis: Detecting Interleukin-6 in Blood Plasma Using Functionalized Screen-Printed Electrodes with a Thermal Detection Methodology. Analytical Chemistry. 2021;93:5931-5938.

[5] Tianhua Xie, Di Xu, Yunsheng Shang, Yunpeng Li, Yingqiu Gu, Guohai Yang, Lulu Qu. Highly sensitive SERS detection of IL-6 in serum by Au@Fe3O4 nanoring-based sandwich immunoassay. Sensors and Actuators B: Chemical. 2023;375:132897.
[6] Dongmin Shi, Chiye Zhang, Xiaoyuan Li, Jie Yuan. An electrochemical paper-based hydrogel immunosensor to monitor serum cytokine for predicting the severity of COVID-19 patients. Biosensors and Bioelectronics. 2023;220:114898.