Supplementary Materials

Functionalized magnetic nanobeads for SERS-based detection of

Staphylococcus aureus

Shuaifeng Ji^{a,b,#}, Yunfeng Xiang^{a,b,#}, Dianpeng Han^b, Chenghua Liu^c,

Yuwan Du^b, Yuan Peng^b, Shuang Li^b, Shuyue Ren^b, Kang Qin^b, Yu Wang^b,

Huanying Zhou^b, Zhenhong Jia^{a,*}, Zhixian Gao^{b,*}

^a School of Information Science and Engineering, Xinjiang University,

Urumqi 83000, China

^bTianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.

^cState Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China [#]These authors contributed equally to this work

*Corresponding author:

Zhenhong Jia: e-mail, jzhh@xju.edu.cn

Zhixian Gao: e-mail, gaozhx@163.com; Tel/Fax:86-022-84655403

Fig. S1 Antibacterial circle test of (a) MBs, (b) PEG-MBs, (c) BSA-PEG-MBs, and (d) TEI-BPBs.

Fig. S2 The capture efficiency of MBs, PEG-MBs, BSA-PEG-MBs and TEI-BPBs

Fig. S3 Capture efficiency of TEI-BPBs to *E. coli*, *Salmonella*, *S. aureus* and *S. mutans*

Fig. S4 Comparison of particle distribution before and after coupling of goldnanoparticles.(A)Au;(B)SERStags

В

Fig. S5 UV-Vis spectra of AuNPs (black), 4GS@AuNPs (red) and immuno-AuNPs (blue). The enlarged spectra show a 6nm red shift of SPR absorbance peak upon conjugation of 4GS and antibodies to the surface of AuNPs

Fig. S6 Peak change of SERS label before and after adding PATP

Fig. S7 SERS spectra of magnetic beads and SERS tags were captured in the absence and presence of *S. aureus*. The intensity of the SERS signal was significantly amplified when the sandwiched SERS tag was bound to the bacterial-magnetic bead complex

Fig. S8 Stability testing of SERS la	testing of SERS labels
--------------------------------------	------------------------

Number	Bacteria strain	Source	Reference
1	S. aureus NCTC8325	(Novick 1967)	[1]
2	E. coli O157:H7	EDL933	[2]
3	Listeria L. monocytogenes	ATCC19111	
4	Salmonella S. typhimurium	CVCC541	[2]
5	Shigella flexneri	ATCC29903	
6	Streptococcus mutans	ATCC25175	

 Table S1 Bacterial strains used in this study.

[1] R. Novick, Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus, Virology 33(1) (1967) 155-66.

[2] X. Sun, Y. Wang, L. Zhang, S. Liu, M. Zhang, J. Wang, B. Ning, Y. Peng, J. He, Y. Hu, Z. Gao, CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157:H7 Detection Based on a Metal-Organic Framework Platform, Analytical chemistry 92(4) (2020) 3032-3041.