Supporting Information

Construction of a novel fluorescent DNA aptasensor for the fast-response and sensitive detection of copper ions in industrial sewage

Yue Mou^a, Yanfei Zhang^a, Xinru Lin^a, Meiyun Chen^a, Yuxiang Xia^a, Shu Zhu^a, Chonghui Wei^a, Xingyu Luo^{a*}

^aSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P.R. China

*E-mail address: jamesluoxingyu@163.com (Xingyu Luo)

Content

1. Synthesis and Characterization
Figure S14
2. Supplemental Tables and Figures5
Table S15
Table S2
Table S3
Table S47
Table S5
Figure S28
Figure S39
Figure S49
Figure S510
Figure S610
Figure S711
Figure S811
3. References12

1. Synthesis and Characterization

1.1 Synthesis of (Z)-2, 6-difluoro-4-((2-methyl-5-oxooxazol-4(5H)-ylidene) methyl) phenyl acetate(1)^[1]

N-Acetylglycine (1.469 g, 12.65 mmol), anhydrous sodium acetate (1.037 g, 12.65 mmol), 2,6-difluoro-4-hydroxybenzaldehyde (2.00 g, 12 mmol), and acetic anhydride (12 mL) were stirred at 120 °C for 4 h. After the reaction was cooled to room temperature, then the resulting crude solid was washed with a small amount of cold ethanol, hot water dried to afford the primary product which was recrystallized from ethanol, yielding a yellow solid of Compound 1 (2.44 g, yield 72%), without purification and characterization for the next step.

1.2 Synthesis of DFHBI-1T (Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-2-methyl-1-(2,2,2-trifluoroethyl) -1H-imidazol-5(4H)-one

Compound 1 (500 mg, 1.78 mmol) was refluxed with 4.3 mL of absolute ethanol, (264.75 mg, 2.67 mmol) of 2,2,2-Trifluoroethylamine, and 370 mg of potassium carbonate for 4 h. The reaction mixture was a cooled to room temperature. The solvent was evaporated and the mixture was redissolved in a 1:1 mixture of ethyl acetate and 500 mM sodium acetate at pH 3.0. The organic layer was separated and dried with

anhydrous sodium sulfate. The solvent was removed under reduced pressure and the reaction mixture was purified by column chromatography (CH₂Cl₂: EtOH = 10:1) to afford 142 mg (yield 25%) of DFHBI-1T as yellow solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.06 (s, 1H), 7.99 (d, *J* = 8.7 Hz, 2H), 7.03 (s, 1H), 4.56 (q, *J* = 9.3 Hz, 2H), 2.41 (s, 3H).

Figure S1. ¹HNMR spectrum of DFHBI-1T.

2.Supplemental Tables and Figures

2.1. Supplemental Tables.

Table S1. Sequences and secondary structures of DNA oligomers applied in this study*.

Oligonucleotide	Sequence (5' - 3')	Structure type
S2T3 _{AT} -GC	CTTAGTAGGGATGATGCGGCAGTGGGCTTCATCTAT ATAAGATGAGGGGACTAAG	Single strand
S2T3 _{AT} -GC-M1	CTTAGTAGCCATGATGCGGCAGTGGGCTTCATCTAT ATAAGATGAGGGGACTAAG	Single strand
S2T3 _{AT} -GC-M2	CTTAGTAGGGATGATGCGGCAGTGGGCTTCATCTAT ATAAGATGACCCGACTAAG	Single strand
P2-S2T4 _{AT}	TAGTAGGGATGATGCGGCAGTGGGCTTCATCTATAT AAGATGAGGGGACTA	Single strand
ssDNA1	CCAGTTCGTAGTAACCC	Single strand
ssDNA2	GGGTTACTACGAACTGG	Single strand
ssDNA3	GAAAATGAGAGACTCAGCTAAGCAAGATAG	Single strand
ssDNA4	GGGAATGAGGGACTCGGCTGGGCAGGATGG	Single strand
ds26	CAATCGGATCGAATTCGATCCGATTG	Duplex
H-Telo	GGGTTAGGGTTAGGGTTAGGG	
HT	TTGGGTTAGGGTTAGGGTTAGGGA	G-quadruplex
Kras	AGGGCGGTGTGGGAAGAGGGGAAGAGGGGGGGGGG	
Hras	TCGGGTTGCGGGCGCAGGGCACGGGCG	

* dsDNA was obtained from the hybridization between ssDNA1 and ssDNA2.

Table S2. Detection	on performance	of previous	ly reported	methods.
	1	1	¥ 1	

Detection methods	Detection linear range	Detection Limits	Reference
Colormetric probe	1.8-200 μM	1.8 µM	1
Reflectance chemosensor	0.78-160 μM	0.612 μM	2
Spectrophotometric method	2-400 μM	0.556 μΜ	3
Colorimetric probe	10-45 μM	0.56 μΜ	4
Nanosensor	0.5-80 μM	0.5 μΜ	5
Fluorescent probe	8.75-20 μM	6.7 μM	6

Table S3. The ICP-OES for the real content of ray	v sewage-1.
---	-------------

Element	Coefficient of dilution	Values of instrument	Final content	Concentrati on (mol/L)	Element	Coefficient of dilution	Values of instrument	Final content	Concentrati on (mol/L)
Yb	1	0.0001	< 0.05	5.78×10 ⁻¹⁰	Hf	1	0.0090	< 0.05	5.04×10 ⁻⁸
Ti	1	0.0001	< 0.05	2.09×10 ⁻⁹	Er	1	0.0094	< 0.05	5.62×10 ⁻⁸
Sc	1	0.0001	< 0.05	2.22×10-9	Zr	1	0.0110	< 0.05	1.21×10 ⁻⁷
Y	1	0.0001	< 0.05	1.12×10-9	Мо	1	0.0114	< 0.05	1.19×10 ⁻⁷
Gd	1	0.0003	< 0.05	1.91×10 ⁻⁹	Ge	1	0.0134	< 0.05	1.85×10 ⁻⁷
Но	1	0.0004	< 0.05	2.43×10-9	Se	1	0.0151	< 0.05	1.91×10 ⁻⁷
Cd	1	0.0005	< 0.05	4.45×10-9	Tl	1	0.0160	< 0.05	7.83×10 ⁻⁸
La	1	0.0007	< 0.05	5.04×10-9	Mn	1	0.0192	< 0.05	3.49×10 ⁻⁷
V	1	0.0007	< 0.05	1.37×10 ⁻⁸	Te	1	0.0199	< 0.05	1.56×10-7
Pd	1	0.0007	< 0.05	6.58×10-9	As	1	0.0223	< 0.05	2.98×10-7
Ga	1	0.0008	< 0.05	1.15×10 ⁻⁸	W	1	0.0328	< 0.05	1.78×10 ⁻⁷
Be	1	0.0008	< 0.05	8.88×10-8	Ba	1	0.0381	< 0.05	2.77×10 ⁻⁸
Nb	1	0.0009	< 0.05	9.69×10 ⁻⁹	Li	1	0.0435	< 0.05	6.27×10-6
Co	1	0.0009	< 0.05	1.53×10 ⁻⁸	Al	1	0.0443	< 0.05	1.64×10 ⁻⁶
Cu	1	0.0010	< 0.05	1.57×10 ⁻⁸	Rh	1	0.0046	< 0.05	4.47×10 ⁻⁸
Zn	1	0.0010	< 0.05	1.53×10 ⁻⁸	Sn	1	0.0060	< 0.05	5.06×10 ⁻⁸
Ag	1	0.0011	< 0.05	1.01×10 ⁻⁸	Pr	1	0.0065	< 0.05	4.61×10 ⁻⁸
Pt	1	0.0012	< 0.05	6.15×10-9	Eu	1	0.0072	< 0.05	4.74×10 ⁻⁸
Ir	1	0.0012	< 0.05	6.24×10 ⁻⁹	Ru	1	0.0077	< 0.05	7.62×10 ⁻⁸
Tm	1	0.0013	< 0.05	7.70×10 ⁻⁹	Bi	1	0.0078	< 0.05	3.73×10 ⁻⁸
Tb	1	0.0016	< 0.05	1.01×10 ⁻⁸	Lu	1	0.0079	< 0.05	4.52×10 ⁻⁸
Ni	1	0.0017	< 0.05	2.90×10 ⁻⁸	Cr	1	0.1016	0.1016	1.95×10 ⁻⁶
Ce	1	0.0023	< 0.05	1.64×10 ⁻⁸	Р	1	0.2022	0.2022	4.53×10-6
Dy	1	0.0027	< 0.05	1.66×10 ⁻⁸	Fe	1	0.3149	0.3149	5.64×10-6
Та	1	0.0029	< 0.05	1.60×10 ⁻⁸	Ca	100	0.5635	56.35	1.41×10 ⁻³
Pb	1	0.0031	< 0.05	1.50×10 ⁻⁸	Sr	1	0.7243	0.7243	8.27×10-6
Sm	1	0.0034	< 0.05	2.26×10-8	K	100	0.9252	92.52	2.37×10-3
Au	1	0.0034	< 0.05	1.73×10 ⁻⁸	Si	1	1.1488	1.1488	4.09×10 ⁻⁵
Sb	1	0.0041	< 0.05	3.37×10 ⁻⁸	В	1	1.2901	1.2901	1.19×10-4
Hg	1	0.0043	< 0.05	2.14×10 ⁻⁸	Mg	1	6.7872	6.7872	2.79×10-4
In	1	0.0044	< 0.05	2.83×10 ⁻⁸	Na	100	19.942	1994.2	8.67×10 ⁻²
Nd	1	0.0087	< 0.05	6.03×10 ⁻⁸					

	coefficient	Values of	Final	Concentration	F1 (coefficient	Values of	Final	Concentration
Element	of dilution	instrument	content	(mol/L)	Element	of dilution	instrument	content	(mol/L)
Y	1	5.6×10-5	< 0.05	6.29376×10 ⁻¹⁰	Та	1	0.009806	< 0.05	5.41947×10 ⁻⁸
Ti	1	6.92×10 ⁻⁵	< 0.05	1.44526×10-9	Eu	1	0.010937	< 0.05	7.19696×10 ⁻⁸
Sc	1	0.000122	< 0.05	2.71477×10-9	Nd	1	0.011418	< 0.05	7.91817×10 ⁻⁸
Yb	1	0.000189	< 0.05	1.09276×10-9	Er	1	0.013753	< 0.05	8.22548×10-8
V	1	0.000284	< 0.05	5.56819×10-9	Pr	1	0.015069	< 0.05	1.06937×10-7
Но	1	0.000309	< 0.05	1.87395×10-9	Р	1	0.018752	< 0.05	6.05404×10 ⁻⁷
Gd	1	0.000822	< 0.05	5.22871×10-9	Tl	1	0.019646	< 0.05	9.6162×10 ⁻⁸
Cd	1	0.000979	< 0.05	8.70937×10-9	W	1	0.02345	< 0.05	1.27582×10-7
La	1	0.001056	< 0.05	7.59915×10-9	Mn	1	0.024079	< 0.05	4.38294×10-7
Be	1	0.001063	< 0.05	1.17967×10 ⁻⁷	Hf	1	0.0274	< 0.05	1.53588×10-7
Ce	1	0.001081	< 0.05	7.71539×10-9	In	1	0.032751	< 0.05	2.8524×10-7
Tm	1	0.001462	< 0.05	8.6519×10-9	Te	1	0.032779	< 0.05	2.56885×10-7
Mo	1	0.00147	< 0.05	1.53221×10 ⁻⁸	Hg	1	0.005763	< 0.05	2.87443×10 ⁻⁸
Pb	1	0.001535	< 0.05	7.40936×10-9	Ag	1	0.006127	< 0.05	5.67991×10 ⁻⁸
Au	1	0.001978	< 0.05	1.00416×10 ⁻⁸	Pt	1	0.006174	< 0.05	3.1648×10 ⁻⁸
Rh	1	0.002073	< 0.05	2.01428×10-8	Со	1	0.006588	< 0.05	1.11787×10-7
Sn	1	0.002245	< 0.05	1.89288×10-8	Ru	1	0.008421	< 0.05	8.33184×10 ⁻⁸
Ir	1	0.002446	< 0.05	1.27287×10 ⁻⁸	Ge	1	0.008586	< 0.05	1.18433×10 ⁻⁷
Dy	1	0.002479	< 0.05	1.52534×10-8	Bi	1	0.008668	< 0.05	4.14771×10 ⁻⁸
Pd	1	0.002536	< 0.05	1.56089×10-8	Al	1	0.062041	0.062041	2.29934×10-6
Tb	1	0.002551	< 0.05	1.60533×10 ⁻⁸	Ba	1	0.06711	0.06711	4.88677×10-7
Zr	1	0.002764	< 0.05	3.03028×10-8	Fe	1	0.08713	0.08713	1.56035×10-6
As	1	0.003056	< 0.05	4.07824×10 ⁻⁸	Li	1	0.129932	0.129932	1.87195×10-5
Sm	1	0.003179	< 0.05	2.11374×10-8	Sr	1	0.752605	0.752605	8.58942×10-6
Cr	1	0.003186	< 0.05	6.12736×10 ⁻⁸	Ca	100	0.917754	91.7754	0.002289805
Zn	1	0.003921	< 0.05	5.99722×10 ⁻⁸	K	100	0.956576	95.6576	0.002446611
Se	1	0.003974	< 0.05	5.03674×10 ⁻⁸	Cu	1	2.667	2.667	4.19736×10-5
Ga	1	0.004449	< 0.05	6.38143×10 ⁻⁸	В	1	7.09706	7.09706	0.000656467
Ni	1	0.005086	< 0.05	8.66594×10 ⁻⁸	Si	1	7.61469	7.61469	0.00027113
Lu	1	0.005471	< 0.05	3.12703×10 ⁻⁸	Mg	1	7.67772	7.67772	0.000315891
Nb	1	0.006763	< 0.05	7.27988×10 ⁻⁸	Na	100	20.6423	2064.23	0.089792074
Sb	1	0.0349	< 0.05	2.86769×10 ⁻⁷					

Table S4. The ICP-OES for the real content of raw sewage-2.

Samples	Theoretical value(µM)	Real value (µM)	Recovery (%)	RSD (%)
	0.5	0.49	98.1	0.23
Raw sewage-2	1.5	1.48	98.4	0.13
	10	9.76	97.6	0.89
	20	19.64	98.2	0.22
	30	29.87	99.6	0.12

Table S5. The detection for Cu^{2+} in raw sewage-2.

2.2. Supplemental Figures.

Figure S2. The fluorescence excitation and emission spectrum of 5 μ L DFHBI-1T (200 μ M) with or without 4 μ L DNA oligomers (100 μ M) that dissolved into the reaction buffer. The fluorescent intensity values ranging from 340 to 640 nm were recorded.

Figure S3. Fluorescence assays for optimizing the binding effect of $S2T3_{AT}$ -GC and DFHBI-1T. The fluorescence intensity of the mixture contained 4 µL DNA oligomers (100 µM) and 5 µL DFHBI-1T (200 µM) at 502 nm were measured by adjusting different conditions including pH, reaction buffer, incubation time and temperature.

Figure S4. The PAGE analysis of DNA oligomers for 1 h, 90 V electrophoresis migration in 1×TB buffer. Especially, Lane M: 25 bp Marker; Lane 1: $S2T3_{AT}$ -GC; Lane 2: $S2T3_{AT}$ -GC-M1; Lane 3: $S2T3_{AT}$ -GC-M2. All DNA oligomers are 1 μ M.

Figure S5. The fluorescence competition experiment between TMyP4 and S2T3_{AT}-GC/ DFHBI-1T. Various concentrations of TMPyP4 (0.1-30 μ M) were mixed with 4 μ L DNA oligomers (100 μ M) and 5 μ L DFHBI-1T (200 μ M).

Figure S6. UV-vis spectra of DFHBI-1T/Cu (II). The UV-vis analysis of DFHBI-1T/Cu (II). 10 μ L DFHBI-1T (200 μ M) was mixed with different concentrations of Cu^{2+.}

Figure S7. Fluorescence determination of $S2T3_{AT}$ -GC/DFHBI-1T with or without the mixture of 500 μ M Cu²⁺ and 1000 μ M EDTA or the mixture of 500 μ M Cu²⁺ and 1000 μ M Na₂S.

Figure S8. The PAGE analysis of $S2T3_{AT}$ -GC which dissolved in the ultrapure water for 10 days interval for 1 h, 90 V electrophoresis migration in 1×TB buffer.

3. References

(1) R. Wu, S. H. Zhang, J. T. Lyu, F. Lu, X. F. Yue and J. G. Lv, A visual volumetric hydrogel sensor enables quantitative and sensitive detection of copper ions, *Chem. Commun.*, 2015, **51**, 8078-8081.

(2) N. H. A. Razak, L. L. Tan, S. A. Hasbullah and L. Y. Heng, Reflectance chemosensor based on bis-thiourea derivative as ionophore for copper(II) ion detection, *Microchem. J.*, 2020, **153**, 104460.

(3) T. Wen, F. Qu, N. B. Li and H. Q. Luo, A nopinone based multi-functional probe for colorimetric detection of Cu²⁺ and ratiometric detection of Ag⁺, *Arab. J. Chem.*, 2017, 10, S1680-S1685.

(4) Q. Jiang, Z. L. Wang, M. X. Li, J. Song, Y. Q. Yang, X. Xu, H. J. Xu and S. F. Wang, A nopinone based multi-functional probe for colorimetric detection of Cu²⁺ and ratiometric detection of Ag, *Photochem. Photobiol. Sci.*, 2020, **19**, 49-55.

(5) T. P. Qing, H. C. Bu, X. X. He, D. G. He, B. Zhou, H. H. Sun, R. C. Jia, W. J. Ma and K. M. Wang, A selective nanosensor for ultrafast detection of Cu²⁺ ions based on C5 DNA-templated gold nanoclusters and Fenton-like reaction, *Analytical Methods*, 2017, **9**, 6222-6227.

(6) M. Gao, C. C. Xing, X. P. Jiang, L. J. Xu, P. H. Li and C. D. Hsiao, Highly selective fluorescence detection of Cu²⁺ based on Schiff base functionalized periodic mesoporous organosilicas, *Luminescence*, 2021, **36**, 951-957.