Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Determination of Copolymer Compositions in Polyhydroxyalkanoates Using ¹H Benchtop Nuclear Magnetic Resonance Spectroscopy

Juan F. Araneda,^a Hasitha de Alwis Weerasekera,^b Matthew C. Leclerc,^{*a} Sharmaine B. Luk,^b and Susanne D. Riegel^a

^aNanalysis Corp., 1-4600 5 St NE, Calgary, AB, Canada T2E 7C3

bGenecis Bioindustries, 1100-700 Bay St, Toronto, ON, Canada M5G 1Z6

^{*}Corresponding author: matt.leclerc@nanalysis.com

Table S1. Summary of monomeric ratios obtained for PHBV1 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

		60 1	MHz			100	MHz			400	MHz	
PHBV1	mo	ol%	W	t%	mo	ol%	W	t%	mo	ol%	w	t%
	ЗНВ	3HV	ЗНВ	3HV	3НВ	3HV	3НВ	3HV	3НВ	3HV	знв	3HV
Assay 1	94.7	5.3	93.9	6.1	96.4	3.6	95.8	4.2	96.6	3.4	96.1	3.9
	94.8	5.2	94.0	6.0	96.2	3.8	95.6	4.4	96.6	3.4	96.1	3.9
	94.1	5.9	93.2	6.8	96.3	3.7	95.7	4.3	96.6	3.4	96.1	3.9
Average	94.5	5.5	93.7	6.3	96.3	3.7	95.7	4.3	96.6	3.4	96.1	3.9
RSD	0.3%	5.7%	0.4%	5.6%	0.1%	2.2%	0.1%	2.2%	0.0%	0.0%	0.0%	0.0%
Assay 2	94.9	5.1	94.1	5.9	96.9	3.1	96.4	3.6	96.6	3.4	96.1	3.9
	95.2	4.8	94.5	5.5	96.7	3.3	96.2	3.8	96.6	3.4	96.1	3.9
	94.9	5.1	94.1	5.9	96.4	3.6	95.8	4.2	96.6	3.4	96.1	3.9
Average	95.0	5.0	94.2	5.8	96.7	3.3	96.1	3.9	96.6	3.4	96.1	3.9
RSD	0.1%	2.8%	0.2%	2.8%	0.2%	6.2%	0.2%	6.1%	0.0%	0.0%	0.0%	0.0%
Assay 3	93.5	6.5	92.5	7.5	96.2	3.8	95.6	4.4	96.7	3.3	96.2	3.8
	94.2	5.8	93.3	6.7	96.3	3.7	95.7	4.3	96.7	3.3	96.2	3.8
	93.9	6.1	93.0	7.0	96.2	3.8	95.6	4.4	96.6	3.4	96.1	3.9
Average	93.9	6.1	92.9	7.1	96.2	3.8	95.7	4.3	96.7	3.3	96.1	3.9
RSD	0.3%	4.7%	0.4%	4.6%	0.0%	1.3%	0.1%	1.2%	0.0%	1.4%	0.1%	1.4%

Table S2. Summary of monomeric ratios obtained for PHBV2 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

		1 00	MHz			100	MHz			400	MHz	
PHBV2	mo	ol%	wt	.%	mo	ol%	W	t%	mo	ol%	w	t%
	знв	3HV	3НВ	3HV								
Assay 1	73.7	26.3	70.7	29.3	74.2	25.8	71.2	28.8	74.0	26.0	71.0	29.0
	73.3	26.7	70.3	29.7	74.1	25.9	71.1	28.9	74.0	26.0	71.0	29.0
	74.0	26.0	71.0	29.0	74.0	26.0	71.0	29.0	74.0	26.0	71.0	29.0
Average	73.7	26.3	70.7	29.3	74.1	25.9	71.1	28.9	74.0	26.0	71.0	29.0
RSD	0.4%	1.1%	0.4%	1.0%	0.1%	0.3%	0.1%	0.3%	0.0%	0.0%	0.0%	0.0%
Assay 2	74.0	26.0	71.0	29.0	74.3	25.7	71.3	28.7	74.0	26.0	71.0	29.0
	74.0	26.0	71.0	29.0	73.8	26.2	70.8	29.2	74.0	26.0	71.0	29.0
	73.5	26.5	70.5	29.5	73.9	26.1	70.9	29.1	73.9	26.1	70.9	29.1
Average	73.8	26.2	70.8	29.2	74.0	26.0	71.0	29.0	74.0	26.0	71.0	29.0
RSD	0.3%	0.9%	0.4%	0.9%	0.3%	0.8%	0.3%	0.8%	0.1%	0.2%	0.1%	0.2%
Assay 3	72.3	27.7	69.2	30.8	74.4	25.6	71.4	28.6	74.0	26.0	71.0	29.0
	72.6	27.4	69.5	30.5	74.8	25.2	71.9	28.1	74.0	26.0	71.0	29.0
	73.5	26.5	70.5	29.5	74.4	25.6	71.4	28.6	74.1	25.9	71.1	28.9
Average	72.8	27.2	69.7	30.3	74.5	25.5	71.6	28.4	74.0	26.0	71.1	28.9
RSD	0.7%	1.9%	0.8%	1.8%	0.3%	0.7%	0.3%	0.7%	0.1%	0.2%	0.1%	0.2%

Table S3. Summary of monomeric ratios obtained for PHBV3 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

acviations (it	00).											
		1 00	MHz			100	MHz			400	MHz	
PHBV3	mo	ol%	W	t%	mo	ol%	W	t%	mo	ol%	w	t%
	3НВ	3HV	ЗНВ	3HV	3НВ	3HV	ЗНВ	3HV	3НВ	3HV	3НВ	3HV
Assay 1	97.1	2.9	96.6	3.4	92.3	7.7	91.2	8.8	92.6	7.4	91.5	8.5
	97.5	2.5	97.1	2.9	92.4	7.6	91.3	8.7	92.6	7.4	91.5	8.5
	97.5	2.5	97.1	2.9	92.7	7.3	91.6	8.4	92.7	7.3	91.6	8.4
Average	97.4	2.6	97.0	3.0	92.5	7.5	91.4	8.6	92.6	7.4	91.5	8.5
RSD	0.2%	7.2%	0.2%	7.1%	0.2%	2.3%	0.2%	2.2%	0.1%	0.6%	0.1%	0.6%
Assay 2	97.6	2.4	97.2	2.8	92.7	7.3	91.6	8.4	92.6	7.4	91.5	8.5
	97.0	3.0	96.5	3.5	92.3	7.7	91.2	8.8	92.6	7.4	91.5	8.5
	97.2	2.8	96.8	3.2	92.3	7.7	91.2	8.8	92.6	7.4	91.5	8.5
Average	97.3	2.7	96.8	3.2	92.4	7.6	91.3	8.7	92.6	7.4	91.5	8.5
RSD	0.3%	9.1%	0.3%	9.1%	0.2%	2.5%	0.2%	2.5%	0.0%	0.0%	0.0%	0.0%
Assay 3	97.0	3.0	96.5	3.5	92.4	7.6	91.3	8.7	92.5	7.5	91.4	8.6
	97.2	2.8	96.8	3.2	92.4	7.6	91.3	8.7	92.6	7.4	91.5	8.5
	97.1	2.9	96.6	3.4	92.6	7.4	91.5	8.5	92.6	7.4	91.5	8.5
Average	97.1	2.9	96.6	3.4	92.5	7.5	91.4	8.6	92.6	7.4	91.5	8.5
RSD	0.1%	2.8%	0.1%	2.8%	0.1%	1.3%	0.1%	1.2%	0.1%	0.6%	0.1%	0.6%

Table S4. Summary of monomeric ratios obtained for PHBV4 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

		1 00	ИНz			100	MHz			400	MHz	
PHBV4	mo	ol%	wt%		mo	ol%	W	t%	mo	ol%	w	t%
	знв	3HV	3НВ	3HV	3НВ	3HV	3НВ	3HV	знв	3HV	3НВ	3HV
Assay 1	94.9	5.1	94.1	5.9	85.2	14.8	83.2	16.8	85.5	14.5	83.5	16.5
	93.8	6.2	92.9	7.1	85.5	14.5	83.5	16.5	85.3	14.7	83.3	16.7
	94.9	5.1	94.1	5.9	85.1	14.9	83.1	16.9	85.5	14.5	83.5	16.5
Average	94.5	5.5	93.7	6.3	85.3	14.7	83.3	16.7	85.4	14.6	83.5	16.5
RSD	0.5%	9.5%	0.6%	9.4%	0.2%	1.2%	0.2%	1.1%	0.1%	0.6%	0.1%	0.6%
Assay 2	95.6	4.4	94.9	5.1	85.6	14.4	83.7	16.3	85.4	14.6	83.4	16.6
	94.0	6.0	93.1	6.9	84.7	15.3	82.7	17.3	85.4	14.6	83.4	16.6
	94.3	5.7	93.4	6.6	85.8	14.2	83.9	16.1	85.4	14.6	83.4	16.6
Average	94.6	5.4	93.8	6.2	85.4	14.6	83.4	16.6	85.4	14.6	83.4	16.6
RSD	0.7%	12.9%	0.8%	12.8%	0.6%	3.3%	0.6%	3.2%	0.0%	0.0%	0.0%	0.0%
Assay 3	93.8	6.2	92.9	7.1	85.3	14.7	83.3	16.7	85.5	14.5	83.5	16.5
	94.4	5.6	93.6	6.4	85.0	15.0	83.0	17.0	85.5	14.5	83.5	16.5
	93.8	6.2	92.9	7.1	84.7	15.3	82.7	17.3	85.5	14.5	83.5	16.5
Average	94.0	6.0	93.1	6.9	85.0	15.0	83.0	17.0	85.5	14.5	83.5	16.5
RSD	0.3%	4.7%	0.3%	4.7%	0.3%	1.6%	0.3%	1.6%	0.0%	0.0%	0.0%	0.0%

Table S5. Summary of monomeric ratios obtained for PHBV5 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

		60 1	ИНz			100	MHz			400	MHz	
PHBV5	mo	ol%	wt%		mo	ol%	W	t%	mo	ol%	w	t%
	ЗНВ	3HV	3НВ	3HV	знв	3HV	ЗНВ	3HV	3НВ	3HV	ЗНВ	3HV
Assay 1	95.6	4.4	94.9	5.1	89.1	10.9	87.6	12.4	89.1	10.9	87.6	12.4
	95.5	4.5	94.8	5.2	88.5	11.5	86.9	13.1	89.2	10.8	87.7	12.3
	95.5	4.5	94.8	5.2	88.2	11.8	86.6	13.4	89.1	10.9	87.6	12.4
Average	95.5	4.5	94.8	5.2	88.6	11.4	87.0	13.0	89.1	10.9	87.6	12.4
RSD	0.0%	1.1%	0.1%	1.0%	0.4%	3.3%	0.5%	3.2%	0.1%	0.4%	0.1%	0.4%
Assay 2	95.1	4.9	94.4	5.6	88.6	11.4	87.0	13.0	89.2	10.8	87.7	12.3
	95.6	4.4	94.9	5.1	88.4	11.6	86.8	13.2	89.2	10.8	87.7	12.3
	95.6	4.4	94.9	5.1	88.6	11.4	87.0	13.0	89.2	10.8	87.7	12.3
Average	95.4	4.6	94.7	5.3	88.5	11.5	86.9	13.1	89.2	10.8	87.7	12.3
RSD	0.2%	5.2%	0.3%	5.1%	0.1%	0.8%	0.1%	0.8%	0.0%	0.0%	0.0%	0.0%
Assay 3	95.7	4.3	95.0	5.0	88.5	11.5	86.9	13.1	89.2	10.8	87.7	12.3
	95.5	4.5	94.8	5.2	88.4	11.6	86.8	13.2	89.1	10.9	87.6	12.4
	95.5	4.5	94.8	5.2	88.3	11.7	86.7	13.3	89.2	10.8	87.7	12.3
Average	95.6	4.4	94.9	5.1	88.4	11.6	86.8	13.2	89.2	10.8	87.6	12.4
RSD	0.1%	2.1%	0.1%	2.1%	0.1%	0.7%	0.1%	0.7%	0.1%	0.4%	0.1%	0.4%

Table S6. Summary of monomeric ratios obtained for PHBV6 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

		60 1	ИНz			100	MHz			400	MHz	
PHBV6	mo	ol%	wt%		mo	ol%	W	t%	mo	ol%	W	t%
	3НВ	3HV	3НВ	3HV	знв	3HV	3НВ	3HV	3НВ	3HV	3НВ	3HV
Assay 1	78.5	21.5	75.9	24.1	81.0	19.0	78.6	21.4	81.0	19.0	78.6	21.4
	80.0	20.0	77.5	22.5	80.6	19.4	78.2	21.8	80.9	19.1	78.5	21.5
	79.8	20.2	77.3	22.7	80.7	19.3	78.3	21.7	80.9	19.1	78.5	21.5
Average	79.4	20.6	76.9	23.1	80.8	19.2	78.3	21.7	80.9	19.1	78.5	21.5
RSD	0.8%	3.2%	0.9%	3.1%	0.2%	0.9%	0.2%	0.9%	0.1%	0.2%	0.1%	0.2%
Assay 2	80.6	19.4	78.2	21.8	81.2	18.8	78.8	21.2	80.8	19.2	78.4	21.6
	79.9	20.1	77.4	22.6	80.7	19.3	78.3	21.7	80.7	19.3	78.3	21.7
	80.8	19.2	78.4	21.6	80.7	19.3	78.3	21.7	80.8	19.2	78.4	21.6
Average	80.4	19.6	78.0	22.0	80.9	19.1	78.4	21.6	80.8	19.2	78.3	21.7
RSD	0.5%	2.0%	0.5%	1.9%	0.3%	1.2%	0.3%	1.2%	0.1%	0.2%	0.1%	0.2%
Assay 3	80.2	19.8	77.7	22.3	80.5	19.5	78.0	22.0	80.9	19.1	78.5	21.5
	79.9	20.1	77.4	22.6	80.9	19.1	78.5	21.5	80.8	19.2	78.4	21.6
	80.0	20.0	77.5	22.5	80.9	19.1	78.5	21.5	80.9	19.1	78.5	21.5
Average	80.0	20.0	77.5	22.5	80.8	19.2	78.3	21.7	80.9	19.1	78.4	21.6
RSD	0.2%	0.6%	0.2%	0.6%	0.2%	1.0%	0.3%	1.0%	0.1%	0.2%	0.1%	0.2%

Table S7. Summary of monomeric ratios obtained for PHBV7 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

		1 00	MHz			100	MHz			400	MHz	
PHBV7	mo	ol%	w	t%	mo	ol%	w	t%	mo	ol%	w	t%
	3НВ	3HV	знв	3HV								
Assay 1	76.5	23.5	73.7	26.3	77.8	22.2	75.1	24.9	77.5	22.5	74.8	25.2
	76.2	23.8	73.4	26.6	77.9	22.1	75.3	24.7	77.6	22.4	74.9	25.1
	76.2	23.8	73.4	26.6	77.9	22.1	75.2	24.8	77.6	22.4	74.9	25.1
Average	76.3	23.7	73.5	26.5	77.9	22.1	75.2	24.8	77.6	22.4	74.9	25.1
RSD	0.2%	0.6%	0.2%	0.6%	0.1%	0.3%	0.1%	0.2%	0.1%	0.2%	0.1%	0.2%
Assay 2	75.4	24.6	72.5	27.5	78.1	21.9	75.4	24.6	77.9	22.1	75.2	24.8
	75.2	24.8	72.3	27.7	78.5	21.5	75.9	24.1	77.9	22.1	75.2	24.8
	75.3	24.7	72.4	27.6	78.4	21.6	75.8	24.2	77.8	22.2	75.1	24.9
Average	75.3	24.7	72.4	27.6	78.3	21.7	75.7	24.3	77.9	22.1	75.2	24.8
RSD	0.1%	0.3%	0.1%	0.3%	0.2%	0.8%	0.2%	0.8%	0.1%	0.2%	0.1%	0.2%
Assay 3	75.8	24.2	73.0	27.0	77.9	22.1	75.2	24.8	77.6	22.4	74.9	25.1
	76.2	23.8	73.4	26.6	77.9	22.1	75.2	24.8	77.5	22.5	74.8	25.2
	75.7	24.3	72.8	27.2	77.9	22.1	75.2	24.8	77.6	22.4	74.9	25.1
Average	75.9	24.1	73.1	26.9	77.9	22.1	75.2	24.8	77.6	22.4	74.9	25.1
RSD	0.3%	0.9%	0.3%	0.9%	0.0%	0.0%	0.0%	0.0%	0.1%	0.2%	0.1%	0.2%

Table S8. Summary of monomeric ratios obtained for PHBV8 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

		60 N	ИHz			100	MHz			400	MHz	
PHBV8	mo	ol%	wt%		mo	ol%	W	t%	mo	ol%	W	:%
	3НВ	3HV										
Assay 1	60.4	39.6	56.8	43.2	61.3	38.7	57.7	42.3	61.1	38.9	57.5	42.5
	60.5	39.5	56.9	43.1	61.0	39.0	57.4	42.6	61.2	38.8	57.6	42.4
	60.7	39.3	57.1	42.9	61.2	38.8	57.6	42.4	61.0	39.0	57.4	42.6
Average	60.5	39.5	56.9	43.1	61.2	38.8	57.6	42.4	61.1	38.9	57.5	42.5
RSD	0.2%	0.3%	0.2%	0.3%	0.2%	0.3%	0.2%	0.3%	0.1%	0.2%	0.1%	0.2%
Assay 2	62.9	37.1	59.3	40.7	62.0	38.0	58.4	41.6	61.4	38.6	57.8	42.2
	62.8	37.2	59.2	40.8	61.8	38.2	58.2	41.8	61.4	38.6	57.8	42.2
	62.6	37.4	59.0	41.0	61.8	38.2	58.2	41.8	61.5	38.5	57.9	42.1
Average	62.8	37.2	59.2	40.8	61.9	38.1	58.3	41.7	61.4	38.6	57.8	42.2
RSD	0.2%	0.3%	0.2%	0.3%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%
Assay 3	60.6	39.4	57.0	43.0	60.7	39.3	57.1	42.9	60.7	39.3	57.1	42.9
	60.7	39.3	57.1	42.9	61.0	39.0	57.4	42.6	60.7	39.3	57.1	42.9
	59.9	40.1	56.3	43.7	60.8	39.2	57.2	42.8	60.7	39.3	57.1	42.9
Average	60.4	39.6	56.8	43.2	60.8	39.2	57.2	42.8	60.7	39.3	57.1	42.9
RSD	0.6%	0.9%	0.6%	0.8%	0.2%	0.3%	0.2%	0.3%	0.0%	0.0%	0.0%	0.0%

Table S9. Summary of monomeric ratios obtained for PHBV9 using ¹H NMR at 60 MHz, 100 MHz, and 400 MHz. The ratios are shown both as mol% and wt%. Three assays were prepared and analyzed for each polymer. The averages of triplicate analyses are included for each assay, in addition to the relative standard deviations (RSD).

acviations (it	00).											
		60 1	ИHz			100	MHz			400	MHz	
PHBV9	mo	ol%	wt	.%	mo	ol%	W	t%	mo	ol%	w	t%
	знв	3HV	знв	3HV	ЗНВ	3HV	3НВ	3HV	3НВ	3HV	3НВ	3HV
Assay 1	58.9	41.1	55.2	44.8	57.7	42.3	54.0	46.0	57.0	43.0	53.3	46.7
	59.2	40.8	55.5	44.5	57.5	42.5	53.8	46.2	57.0	43.0	53.3	46.7
	59.4	40.6	55.7	44.3	57.2	42.8	53.5	46.5	56.8	43.2	53.1	46.9
Average	59.2	40.8	55.5	44.5	57.5	42.5	53.8	46.2	56.9	43.1	53.2	46.8
RSD	0.3%	0.5%	0.4%	0.5%	0.4%	0.5%	0.4%	0.5%	0.2%	0.2%	0.2%	0.2%
Assay 2	58.4	41.6	54.7	45.3	57.5	42.5	53.8	46.2	57.1	42.9	53.4	46.6
	57.7	42.3	54.0	46.0	57.8	42.2	54.1	45.9	57.1	42.9	53.4	46.6
	58.2	41.8	54.5	45.5	57.6	42.4	53.9	46.1	57.2	42.8	53.5	46.5
Average	58.1	41.9	54.4	45.6	57.6	42.4	53.9	46.1	57.1	42.9	53.4	46.6
RSD	0.5%	0.7%	0.6%	0.7%	0.2%	0.3%	0.2%	0.3%	0.1%	0.1%	0.1%	0.1%
Assay 3	59.3	40.7	55.6	44.4	57.4	42.6	53.7	46.3	57.2	42.8	53.5	46.5
	58.6	41.4	54.9	45.1	57.6	42.4	53.9	46.1	57.2	42.8	53.5	46.5
	59.0	41.0	55.3	44.7	57.6	42.4	53.9	46.1	57.1	42.9	53.4	46.6
Average	59.0	41.0	55.3	44.7	57.5	42.5	53.8	46.2	57.2	42.8	53.5	46.5
RSD	0.5%	0.7%	0.5%	0.7%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%

Figure S1. ¹H (60.7 MHz) NMR spectrum of PHBV1 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S2. ¹H (102.4 MHz) NMR spectrum of PHBV1 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

solvent peak for chloroform. The regions of interest are integrated.

Figure S4. ¹H (60.4 MHz) NMR spectrum of PHBV2 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S5. ¹H (102.4 MHz) NMR spectrum of PHBV2 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S6. ¹H (400.1 MHz) NMR spectrum of PHBV2 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S7. ¹H (60.4 MHz) NMR spectrum of PHBV3 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S8. ¹H (102.4 MHz) NMR spectrum of PHBV3 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S9. ¹H (400.1 MHz) NMR spectrum of PHBV3 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S10. ¹H (60.7 MHz) NMR spectrum of PHBV4 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

solvent peak for chloroform. The regions of interest are integrated.

solvent peak for chloroform. The regions of interest are integrated.

Figure S13. ¹H (60.4 MHz) NMR spectrum of PHBV5 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

solvent peak for chloroform. The regions of interest are integrated.

Figure S15. ¹H (400.1 MHz) NMR spectrum of PHBV5 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S16. ¹H (60.7 MHz) NMR spectrum of PHBV6 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

solvent peak for chloroform. The regions of interest are integrated.

Figure S18. ¹H (400.1 MHz) NMR spectrum of PHBV6 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S19. ¹H (59.5 MHz) NMR spectrum of PHBV7 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S20. ¹H (102.6 MHz) NMR spectrum of PHBV7 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

solvent peak for chloroform. The regions of interest are integrated.

Figure S22. ¹H (60.7 MHz) NMR spectrum of PHBV8 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S23. ¹H (102.6 MHz) NMR spectrum of PHBV8 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S24. ¹H (400.1 MHz) NMR spectrum of PHBV8 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

Figure S25. ¹H (60.4 MHz) NMR spectrum of PHBV9 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

ppmFigure S26. ¹H (102.6 MHz) NMR spectrum of PHBV9 (Assay 1, Run 1) in CDCl₃. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.

\$ppm\$ Figure S27. 1H (400.1 MHz) NMR spectrum of PHBV9 (Assay 1, Run 1) in CDCl3. The asterisk represents the residual solvent peak for chloroform. The regions of interest are integrated.