One-Step Synthesis of a pH Switched Pyrene-Based Fluorescent Probe for Ratiometric Detection of HS⁻ in real water samples

Kuppan Magesh¹, Sukhvant Singh¹, Shu Pao Wu², Sivan Velmathi^{1*}

¹Organic and Polymer Synthesis Laboratory, Department of chemistry, National Institute of

Technology, Tiruchirappalli – 620 015, India.

²Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, ROC

Email: velmathis@nitt.edu

Supplementary data

S.	Contents				
No.		No.			
1	Table S1. Comparison of proposed probe with recently reported pHresponsive fluorescent probe.				
2	Figure S1. ¹ H NMR Spectrum of Pyr				
3	Figure S2. ¹³ C NMR Spectrum of Pyr				
4	Figure S3. DEPT 135 NMR spectrum of Pyr	S4			
5	Figure S4. LR-Mass spectrum of Pyr	S4			
6	Figure S5. (a) Colorimetric and fluorescence changes of Pyr in 10 mM	S5			
	PBS containing 30% ACN of pH values from 1.0 to 10.0 (b) Fluorescence				
	intensities of Pyr in 10 mM PBS containing 30% ACN of pH values from				
	1.0 to 10.0				
7	Figure S6. Time-dependent fluorescence intensity of Pyr at 595 nm	S5			
	from 0 to 60 minutes in 10 mM PBS with 30% ACN and pH values of				
	2.0 (red line) and 7.4 (blue line).				
8	Figure S7. Fluorescence intensity of Pyr at 595 nm in 10 mM PBS	S6			
	containing 30% ACN of pH 2.0 (red bars) and 7.4 (blue bars) upon				
	treatment with 400 μM series of different cations, anions, and amino				
	acids.				
9	Figure S8. Linear relationship of $I_{482 \text{ nm}}/I_{595 \text{ nm}}$ vs HS ⁻ from 0-400 μ M.	S6			
10	Figure S9. ¹ H NMR spectrum of probe before and after addition of TFA	S7			

Table of contents

	(20 µL)	
11	Figure S10. ESI mass spectrum of PyrH after reacted with HS ⁻	S 7
12	ESI 1. Detection limit and quantum yield calculation	S 7
13	Table S2. Quantum yield data	S8

Table S1. Comparison of proposed probe with recently reported pH responsive fluorescent probe.

S.NO	Probe	pH range	Emissio n (λ _{max})	Solvent	Stoke shift	Reversibilit y with specific	Reference
1.		7.2	579 nm	50 % aq. MeOH	-	analyte -	1
2.		4.0-8.0	570 nm	Hexane, THF, EtOH, MeCN, And DMSO	87,95,106 ,111, and 122nm	-	2
3.		4.5-6.0	550 nm	Tris buffer- HCl	100 nm	-	3
4.		12.0	560 nm	EtOH	107 nm	-	4
5.		3.0-6.0	510 nm	H ₂ O	-	-	5
6.		2.0	595 nm	70 % aq. ACN	113 nm	HS ⁻	This work

Figure. S1. ¹H NMR Spectrum of Pyr

Figure. S2. ¹³C NMR Spectrum of Pyr

Figure S3. DEPT 135 NMR spectrum of Pyr

Figure S4. LR-Mass spectrum of Pyr

Figure S5. (a) Colorimetric and fluorescence changes of Pyr in 10 mM PBS containing 30% ACN of pH values from 1.0 to 10.0 (b) Fluorescence intensities of Pyr in 10 mM PBS containing 30% ACN of pH values from 1.0 to 10.0

Figure S6. Time-dependent fluorescence intensity of Pyr at 595 nm from 0 to 60 minutes in 10 mM PBS with 30% ACN and pH values of 2.0 (red line) and 7.4 (blue line).

Figure S7. Fluorescence intensity of Pyr at 595 nm in 10 mM PBS containing 30% ACN of pH 2.0 (red bars) and 7.4 (blue bars) upon treatment with 400 μ M series of different cations, anions, and amino acids.

Figure S8. Linear relationship of $I_{482\ nm}/I_{595\ nm}$ vs HS $^{\text{-}}$ from 0-400 $\mu M.$

Figure S9. ¹H NMR spectrum of probe before and after addition of TFA (20 μ L)

Figure S10. ESI mass spectrum of PyrH after reacted with HS⁻

ESI 1. Detection limit and quantum yield calculation

Based on the IUPAC definition, the detection limit was determined based on the formula and the fluorescence titration data

LOD = 3Sb/m

Where Sb is the standard deviation of blank measurement and 'm' represents the slop between intensity and ion concentrations.

Quantum yield

 $\Phi_S = \Phi_R I_S / I_R * A_R / A_S$

 Φ_{s} - Quantum yield of sample; Φ_{R} - Quantum yield of reference (RhB = 0.32)

Is- Integrated fluorescent area of sample; IR- Integrated fluorescent area of reference

A_R- Absorbance of reference; A_S- Absorbance of sample

Sample Absorbance Fluorescence **Solutions** Φ (I_A) Rhodamine-1.0144 462259.3705 Water 0.32 В PyrH 0.4409 140629.6275 30 % 0.22 ACN in PBS PyrH+HS-0.6149 64434.694 30 % 0.07 ACN in PBS

Table S2. Quantum yield data

Reference

- 1 A. Chhikara, D. Tomar, G. Bartwal, M. Chaurasia, A. Sharma, S. Gopal and S. Chandra, *J. Fluoresc.*, 2023, **33**, 25–41.
- 2 Y. Zuo, Y. Chai, X. Liu, Z. Gao, X. Jin, F. Wang, Y. Bai and Z. Zheng, *Spectrochim. Acta -Part A Mol. Biomol. Spectrosc.*, 2023, **291**, 122338.
- 3 S. Chen, X. Ma, L. Wang, Y. Wu, Y. Wang, W. Fan and S. Hou, *Sensors Actuators B Chem.*, 2023, **379**, 133272.
- 4 D. Singh, S. Tomar, S. Singh, G. Chaudhary, A. P. Singh and R. Gupta, *J. Photochem. Photobiol. A Chem.*, 2023, **435**, 114334.
- 5 X. Yang, Y. Gao, Z. Huang, X. Chen, Z. Ke, P. Zhao, Y. Yan, R. Liu and J. Qu, *Mater. Sci. Eng. C*, 2015, **52**, 97–102.