1 Quality control for traditional Chinese medicine, Millettia Speciosa

2 Champ, using ultra-high-performance liquid chromatography

3 fingerprint, serum pharmacochemistry and network pharmacology

4 Material and method

5 1. Study on serum pharmacochemistry of MSC

6 *1.1 Optimization of dosage*

10 males SD rats were randomly divided into 5 groups (n=2): control group and 4 7 MSC administration groups with different doses. Except control group, all group rats 8 9 were administrated 6.25 g/kg, 15.625 g/kg, 25.0 g/kg, 31.25 g/kg of MSC, respectively, which were equivalent twice, 5 times, 8 times, 10 times to the clinical dosage in adults. 10 The control group was given distilled water as above method. All rats were fasting 12 11 h but freely drinking before experiment. After administrated 1.5 h, rats were 12 13 anesthetized by intraperitoneal injection of 20% carbamate solution 0.5ml/100g. Rats blood samples were collected from the abdominal aorta and stand on ice for 30 min. 14 Then blood samples were centrifugated at 3000 rpm for 10 min. The supernatant 15 solution of same group rats was mixed and as pharmaceutic serum. 16

17 *1.2 Optimization of blood collection time*

15 males SD rats were randomly divided into 5 groups (n=3): control group and 4 18 MSC administrated groups. Except control group, all groups were accepted 25.0 g/kg 19 MSC. After administrated 1 h, 3 h, 6 h, 12 h, rats were anesthetized by intraperitoneal 20 injection of 20% carbamate solution 0.5ml/100g, respectively. Rats blood samples were 21 collected from the abdominal aorta and stand on ice for 30 min. Then blood samples 22 were centrifugated at 3000 rpm for 10 min. The supernatant solution of same time of 23 blood collection was mixed and as pharmaceutic serum for subsequent analysis. The 24 25 control group was given distilled water as above method and collected blood samples 26 from the abdominal aorta as control serum.

27 *1.3 Optimization of sample pretreatment method*

28 2 dose of serum 500 μ l were taken at 3 h time point, then 2.0 ml methanol and 29 acetonitrile were added to precipitate protein, respectively. After that they were 30 vortexed for 30s and centrifugated at 13000 rpm in 4 °C for 10 min. Finally, the 31 supernatant solution was dry by N₂ and stored at -20 °C for subsequent analysis using 32 LC-MS.

33 2. Quantitative analysis of lenticin

34 2.1 Optimization of chromatographic condition

Firstly, the lenticin standard was scan by full wavelength and its UV absorption map was recorded. Secondly, S3 test solution was used for mobile phases expedition which including methanol-water, acetonitrile-water and acetonitrile-0.1% formic acid in water. Thirdly, the flow rate with 0.2 ml/min, 0.3 ml/min and 0.4 ml/min were investigated in sequence. Finally, the column temperature for 20 °C, 30 °C and 40 °C were also optimized.

41 *2.2 Method validation*

The specificity was confirmed by injecting 1 µl of S3 test solution and negative 42 sample solution. For linearity evaluation, lenticin standard solutions were made up at 43 concentrations of 10.008, 25.02, 50.04, 100.08, 150.12, 200.16 µg/ml and analysis. For 44 45 precision and repeatability evaluation, S3 test solution were continuous injected 6 times to value the precision, and 6 individual S3 test solution was analyzed in parallel for 46 repeatability determination. To confirm the stability, the S3 test solution was tested at 47 0,2,4,6,8,12,24 h, respectively. Recoveries was carried out by adding the know lenticin 48 standard solution into 6 portions of S3 with known content for analysis its peak area. 49 Recoveries were calculated as follow aquation: recovery $(\%) = 100^*$ (observed content-50 original content) / spiked content. 51

52 **Result**

53 1. Serum pharmacochemistry analysis of MSC

54 1.1 Results of dosage optimization.

In our previously look for literature found that the clinical dosage of MSC is 15 to 55 30 g, and 30 g is the most prescribed dosage, which due to the MSC is a hard root 56 medicine material and the prescription use larger to better play the effect ^[1]. So, the 57 doses as 30 g are determined to our study, which translates to a dose of 3.125 g/kg for 58 rats. What's more, our purposed is to find the prototypal and metabolic components that 59 enter the bloodstream, but what components enters into the blood may be trace. To 60 achieve the detection line of the instrument and better detect the prototype and 61 metabolic components entering the blood, our experiment was converted 2, 5, 8 and 10 62 times of human clinical dose (3.125g/kg for rats) into rat oral dose to investigate the 63 best administration dose. The serum samples of different dose groups were determinate 64 and the identified result between medicated serum and blank serum were compared 65 based on the Compound Discoverer 3.1 software. Then the number of ingredients which 66 consisted in medicated serum instead of blank serum were used as a quantitative 67 68 indicator. The result was showed that there were more components which absorbed into 69 blood were identified in the dose of 25.0 g/kg of medicated serum samples (Table S11). Moreover, their peaks response was relatively higher which were appropriated for 70 analyzing and identifying (Fig S4). 71

72 1.2 Result of blood collection time optimization

The serum samples of multiple blood collection time points were analyzed based on Compound Discoverer 3.1 software. The blank serum and medicated serum were compared and the number of ingredients which consisted in medicated serum instead of blank serum were used as a quantitative indicator. The result showed that there were more components which absorbed into blood were identified in the medicated serum after administrating for 3 h (**Table S12**). In addition, their peaks response was relatively higher which were appropriated for analyzing and identifying (**Fig S5**).

80 *1.3 Result of pretreatment methods optimization.*

The serum samples usually contained many endogenous substances which would disturb the detection of components which absorbed into blood, so it's necessary for pretreating the serum samples before detection. The result exhibited that the samples which had treated by acetonitrile were found more components that absorbed into blood
(Table S13). Besides, it has the less impurity peaks, good peak shape and the low
baseline which were good for the identification of constituents absorbed into blood (Fig

87 **S6**).

88 **2.** Quantitative analysis of lenticin

89 2.1 Chromatographic condition investigation

As the **Figure S9** showed, the maximum absorption wavelength of lenticin was 280 90 nm through full wavelength scanning; Then the result of different mobile phase was 91 showed at Table S14 and Figure S10, the order of the peak area of each mobile phase 92 was acetonitrile-0.1% formic acid water > acetonitrile-water > methanol-water, but the 93 separation degree of acetonitrile-0.1% formic acid water was lower than other 2 mobile 94 phase and take into consideration the peak of MSC from different batches was various, 95 so acetonitrile-water was determinate as the best mobile phase; The result of flow rate 96 and column temperatures was demonstrated in Table S15, Figure S11 and Table S16, 97 Figure S12, and the flow rate of 0.2 ml/min and the column temperature of 40 °C have 98 excellent peak and separation degree. 99

100

101

Table S1 Collection information of 12 batches of Millettia Speciosa Champ from Guangdong province

NO.	Source	NO.	Source
S1	Yangjiang	S7	Baise
S2	Yangjiang	S8	Baise
S3	Yangjiang	S 9	Baise
S4	Jiangmen	S10	Qinzhou
S5	Jiangmen	S11	Qinzhou
S 6	Jiangmen	S12	Qinzhou

102 103

		Table	S2 The simila	rity of precisi	on test		
Sample	1	2	3	4	5	6	Comparison
1	1.000	0.936	0.940	0.950	0.934	0.947	0.942
2	0.936	1.000	0.999	0.997	0.992	0.985	0.999
3	0.940	0.999	1.000	0.998	0.995	0.986	0.999
4	0.950	0.997	0.998	1.000	0.991	0.988	0.999
5	0.934	0.992	0.995	0.991	1.000	0.984	0.996
6	0.947	0.985	0.986	0.988	0.984	1.000	0.988
Comparison	0.942	0.999	0.999	0.999	0.996	0.988	1.000

104 105

Table S3 The similarity of repeatability test

Sample	S1-1	S1-2	S1-3	S1-4	S1-5	S1-6	Comparison
S1-1	1.000	0.996	0.998	0.996	0.999	0.996	0.999
S1-2	0.996	1.000	0.999	0.986	0.995	0.998	0.992
S1-3	0.998	0.999	1.000	0.992	0.997	0.998	0.996
S1-4	0.996	0.986	0.992	1.000	0.996	0.989	0.999
S1-5	0.999	0.995	0.997	0.996	1.000	0.995	0.999

		S1-6	0.996	0.	998	0.998	0.989	0.9	995	1.000	0.993		
	Co	omparison	0.999	0.	992	0.996	0.999	0.9	999	0.993	1.000		
10	6												
10	17				Table S4	The simila	arity of sta	bility test				I	
		Samj	ple	0 h	2 h	4 h	8 h	12 h	24 h	Co	mparison		
		0 ł	1	1.000	0.997	0.976	0.974	0.975	0.978		0.977		
		2 ł	1	0.997	1.000	0.973	0.976	0.977	0.973		0.977		
		4 ł	1	0.976	0.973	1.000	0.996	0.997	0.999		0.999		
		8 ł	1	0.974	0.976	0.996	1.000	1.000	0.993		0.999		
		12	h 1	0.975	0.977	0.997	1.000	1.000	0.993		0.999		
		Compa	h urison	0.978	0.973	0.999	0.993	0.993	1.000		0.997		
10	0	Compa	115011	0.977	0.977	0.999	0.999	0.999	0.997		1.000	i	
10	19		Table	S5 Relativ	ve retentio	n times of	9 common	peaks in j	positive io	n mode			
NO.	S 1	S2	S3	S4	S5	S 6	S7	S 8	S9	S10	S11	S12	RSD%
1	0.183	0.191	0.189	0.193	0.190	0.189	0.190	0.191	0.191	0.191	0.191	0.194	1.41
2	0.426	0.440	0.436	0.439	0.438	0.437	0.438	0.440	0.441	0.441	0.441	0.441	1.00
3	0.543	0.550	0.547	0.554	0.550	0.554	0.555	0.553	0.554	0.557	0.552	0.554	0.70
4	0.586	0.586	0.585	0.589	0.588	0.586	0.588	0.588	0.587	0.590	0.590	0.587	0.28
5	0.846	0.868	0.859	0.863	0.864	0.858	0.861	0.865	0.867	0.867	0.867	0.867	0.75
6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.00
7	1.203	1.233	1.220	1.227	1.226	1.226	1.226	1.233	1.236	1.236	1.233	1.231	0.75
8	2.474	2.538	2.512	2.534	2.528	2.519	2.526	2.539	2.545	2.554	2.545	2.545	0.85
9	2.696	2.769	2.737	2.759	2.752	2.744	2.752	2.766	2.774	2.774	2.774	2.774	0.82
11	0	2.709	2.757	2.755	2.752	2.7 11	2.752	2.700	2.77	2.771	2.771	2.771	0.02
11	.1		Table S	66 Relativo	e retention	times of 1	8 common	peaks in	negative i	on mode			
NO.	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	RSD%
1	0.096	0.096	0.096	0.097	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.095	0.52
2	0.124	0.124	0.124	0.124	0.124	0.123	0.124	0.123	0.124	0.116	0.124	0.124	1.69
3	0.198	0.198	0.198	0.188	0.186	0.189	0.198	0.200	0.199	0.190	0.199	0.191	2.73
4	0.328	0.328	0.330	0.331	0.330	0.330	0.332	0.333	0.334	0.336	0.336	0.340	1.13
5	0.567	0.570	0.570	0.573	0.572	0.571	0.574	0.574	0.578	0.578	0.578	0.583	0.79
6	0.620	0.620	0.623	0.624	0.623	0.620	0.620	0.619	0.618	0.618	0.616	0.616	0.43
7	0.643	0.643	0.640	0.647	0.647	0.644	0.650	0.648	0.652	0.652	0.654	0.657	0.76
8	0.685	0.685	0.687	0.689	0.687	0.686	0.690	0.688	0.692	0.692	0.692	0.697	0.49
9	0.887	0.887	0.887	0.889	0.887	0.883	0.887	0.883	0.885	0.885	0.883	0.887	0.24
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.00
11	1 218	1,218	1.218	1 222	1 220	1,214	1.220	1.216	1.220	1.220	1.220	1.225	0.24
12	1 270	1 279	1 220	1 2 2 2	1 390	1 272	1 220	1 276	1 220	1 392	1 380	1 288	0.24

13	1.453	1.453	1.453	1.458	1.455	1.448	1.455	1.451	1.455	1.455	1.455	1.462	0.23	
14	1.957	1.957	1.957	1.961	1.957	1.947	1.957	1.952	1.957	1.957	1.957	1.968	0.24	
15	1.979	1.979	1.982	1.986	1.979	1.972	1.979	1.974	1.982	1.982	1.982	1.991	0.25	
16	2.015	2.015	2.015	2.019	2.015	2.005	2.015	2.009	2.017	2.015	2.015	2.026	0.25	
17	2.242	2.239	2.239	2.244	2.239	2.228	2.239	2.233	2.239	2.239	2.239	2.248	0.23	
18	2.290	2.288	2.290	2.293	2.288	2.279	2.290	2.284	2.290	2.292	2.288	2.300	0.22	
112	-													
113	8		Table S	7 Relative	peak areas	s of 9 chai	racteristic	peaks in	positive i	on mode				
NO.	S1	S2	S3	S4	S5	S6	S7	S 8	S9	S10	S11	S12	RSD%	
1	0.475	0.476	2.887	0.662	0.480	0.657	0.423	0.371	0.170	0.207	0.251	0.307	119.47	
2	1.110	0.665	3.296	0.876	1.010	0.996	0.448	0.431	0.217	0.494	0.502	0.589	91.11	
3	3.035	1.508	6.855	1.324	2.247	1.280	0.772	0.823	0.728	0.728	1.321	1.007	96.14	
4	1 030	0.847	1 436	0 529	0.636	0 355	0 304	0 508	0 449	0 179	0 329	0.678	58 51	

4	1.030	0.847	1.436	0.529	0.636	0.355	0.304	0.508	0.449	0.179	0.329	0.678	58.51
5	0.555	0.325	1.288	0.664	0.572	0.286	0.572	0.347	0.270	0.369	0.258	0.461	57.25
6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.00
7	9.055	4.530	19.173	10.152	9.521	8.268	9.467	3.667	3.635	3.406	4.369	8.145	57.30
8	0.993	0.564	2.440	0.597	0.729	1.195	0.627	0.437	0.260	0.291	0.420	0.532	78.60
9	0.492	0.569	1.116	0.885	0.959	0.236	0.509	0.250	0.196	0.544	0.626	0.790	49.30

Table S8 Relative peak areas of 18 characteristic peaks in negative ion mode

NO.	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	RSD%
1	0.232	0.213	0.228	0.180	0.164	0.350	0.181	0.260	0.243	0.420	0.295	0.181	31.26
2	0.918	0.682	0.869	0.610	0.543	1.425	0.564	0.432	0.336	1.075	0.465	0.339	47.63
3	0.201	0.090	0.286	0.143	0.112	0.234	0.163	0.106	0.098	0.267	0.069	0.089	48.29
4	0.242	0.202	0.333	0.202	0.217	0.170	0.091	0.189	0.086	0.318	0.194	0.116	39.60
5	0.167	0.201	0.272	0.133	0.145	0.047	0.093	0.071	0.085	0.127	0.146	0.113	45.77
6	1.135	1.801	8.159	0.968	0.987	0.135	0.434	0.499	0.620	1.236	1.187	0.598	145.32
7	0.312	0.362	0.394	0.206	0.280	0.079	0.141	0.101	0.122	0.413	0.464	0.228	51.04
8	0.843	0.828	0.820	0.988	0.700	0.438	0.963	1.136	1.191	1.361	0.803	0.867	26.52
9	0.959	1.170	3.330	1.112	1.201	0.341	0.494	0.317	0.672	1.946	1.653	1.100	70.09
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.00
11	0.112	0.255	0.358	0.361	0.392	0.099	0.099	0.071	0.090	0.534	0.472	0.308	62.65
12	0.406	0.392	0.521	0.262	0.293	0.551	0.270	0.641	0.535	0.265	0.296	0.262	35.18
13	0.270	0.400	1.076	0.285	0.298	0.080	0.165	0.047	0.206	0.432	1.185	0.394	89.58
14	0.228	0.611	0.309	0.587	0.615	0.164	0.343	0.406	0.383	1.472	1.230	0.525	68.99
15	0.127	0.432	0.235	0.376	0.543	0.107	0.181	0.207	0.142	0.981	0.839	0.465	73.79
16	0.230	0.468	0.226	0.594	0.712	0.209	0.317	0.338	0.256	1.399	1.098	0.521	70.98
17	0.954	1.235	0.813	1.017	1.836	0.303	0.797	1.195	0.946	1.992	2.302	1.489	46.05

	18	0.323	0.593	0.741	0.658	1.010	0.810	0.642	0.6	85 0	436	4.314	1.548	0.680	103.88
	116														
_	117		Tab	le S9 Sim	ilarity ev	aluation r	esults of	12 batche	s of MS	C in posi	tive ion	mode			
_	Sample	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	Compa	rison
	S1	1.000	0.982	0.985	0.969	0.983	0.976	0.964	0.977	0.975	0.937	0.965	0.970	0.98	34
	S2	0.982	1.000	0.974	0.964	0.980	0.963	0.946	0.987	0.978	0.966	0.982	0.967	0.98	35
	S 3	0.985	0.974	1.000	0.962	0.978	0.969	0.947	0.961	0.949	0.935	0.959	0.955	0.97	73
	S4	0.969	0.964	0.962	1.000	0.992	0.986	0.992	0.974	0.977	0.961	0.969	0.996	0.99	91
	S5	0.983	0.980	0.978	0.992	1.000	0.980	0.979	0.976	0.974	0.969	0.983	0.989	0.99	02
	S6	0.976	0.963	0.969	0.986	0.980	1.000	0.986	0.978	0.977	0.940	0.956	0.982	0.98	38
	S 7	0.964	0.946	0.947	0.992	0.979	0.986	1.000	0.968	0.976	0.942	0.949	0.992	0.98	35
	S 8	0.977	0.987	0.961	0.974	0.976	0.978	0.968	1.000	0.994	0.963	0.971	0.976	0.99	91
	S9	0.975	0.978	0.949	0.977	0.974	0.977	0.976	0.994	1.000	0.960	0.969	0.982	0.99	90
	S10	0.937	0.966	0.935	0.961	0.969	0.940	0.942	0.963	0.960	1.000	0.986	0.961	0.97	2
	S11	0.965	0.982	0.959	0.969	0.983	0.956	0.949	0.971	0.969	0.986	1.000	0.968	0.98	31
	S12	0.970	0.967	0.955	0.996	0.989	0.982	0.992	0.976	0.982	0.961	0.968	1.000	0.99	91
_	Comparison	0.984	0.985	0.973	0.991	0.992	0.988	0.985	0.991	0.990	0.972	0.981	0.991	1.00	00
	118														
-	119		Tabl	e S10 Sin	nilarity ev	aluation 1	esults of	12 batche	es of MS	C in neg	ative ion	mode			
_	Sample	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	Compar	ison
	S1	1.000	0.879	0.713	0.842	0.815	0.743	0.840	0.814	0.876	0.617	0.752	0.817	0.914	4
	S2	0.879	1.000	0.758	0.919	0.846	0.602	0.806	0.727	0.802	0.697	0.810	0.851	0.93	8
	S3	0.713	0.758	1.000	0.619	0.567	0.323	0.473	0.418	0.538	0.435	0.533	0.504	0.71	8
	S4	0.842	0.919	0.619	1.000	0.908	0.708	0.909	0.777	0.855	0.764	0.845	0.894	0.95	1
	S5	0.815	0.846	0.567	0.908	1.000	0.652	0.844	0.780	0.822	0.833	0.922	0.915	0.943	3
	S 6	0.743	0.602	0.323	0.708	0.652	1.000	0.821	0.705	0.700	0.603	0.557	0.611	0.70	9
	S 7	0.840	0.806	0.473	0.909	0.844	0.821	1.000	0.838	0.878	0.702	0.763	0.826	0.88	8
	S 8	0.814	0.727	0.418	0.777	0.780	0.705	0.838	1.000	0.933	0.665	0.747	0.830	0.84	0
	S9	0.876	0.802	0.538	0.855	0.822	0.700	0.878	0.933	1.000	0.664	0.771	0.851	0.893	5
	S10	0.617	0.697	0.435	0.764	0.833	0.603	0.702	0.665	0.664	1.000	0.831	0.776	0.82	5
	S11	0.752	0.810	0.533	0.845	0.922	0.557	0.763	0.747	0.771	0.831	1.000	0.920	0.90	8
	S12	0.817	0.851	0.504	0.894	0.915	0.611	0.826	0.830	0.851	0.776	0.920	1.000	0.92	5
_	Comparison	n 0.914	0.938	0.718	0.951	0.943	0.709	0.888	0.840	0.895	0.825	0.908	0.925	1.00	0
	120														
	121		Table S	11 The ar	nounts of	transition	nal compo	onents in	the bloo	d of diffe	erent dos	e groups		_	
				Gro	oup			Num	ber of co	omponent	s absorbe	ed into the	blood		
				6.25	g/kg					2	215				
				15 (05						1	20				

		25.0 g/kg		220	
		31.25 g/kg		210	
122					
123	Table S12 The	e amounts of transition	al components in b	lood at different blood sa	ampling tines
		Group	Number of	f components absorbed int	o the blood
		1 h		49	
		3 h		65	
		6 h		43	
124		12 h		30	
.25	Table S13 The	e amounts of transition	al components in b	lood at different blood sa	mpling times
		Group	Numb	per of components absorbe	ed into the blood
		Methanol		65	
	A	Acetonitrile		85	
.26 .27		Table S14 Opti	mization of differen	nt mobile phases	
	Mobile phase type	Retention time (min)	Peak area	Separation degree	Theoretical plates
	Methanol-water	7.667	163162	12.280321	13186.893480
	Acetonitrile-water	3.031	166783	10.453897	12378.883302
	Acetonitrile- 0.1% formic water	4.105	171453	5.4169755	12470.326432
L28 L29		Table S15 Oj	otimization of differ	rent flow rates	
	Flow rate (ml/min)	Retention time (min)	Peak area	Separation degree	Theoretical plates
	0.2	5.641	252563	10.993685	15421.615969
	0.3	3.031	166783	10.453897	12378.883302
	0.4	3.031	127874	4.376920	11066.852614
.30 .31		Table S16 Investig	ation of different co	olumn temperatures	
	Column temperature	Retention time (min)	Peak area	Separation degree	Theoretical plates
	20°C	6.532	244150	13.147771	16046.684122
			7		

Fig S1 Chromatogram of (A) precision; (B)repeatability;(C) stability test

141 2. Guanine

142143 3. Tryptophan

146 5. Glycyrrhetinic acid

148 6. Uridine 5'-monophosphate

150 7. Malic acid

154 9. 4-Hydroxybenzaldehyde

158 11. Lenticin

Fig S3 Mass spectrometry information and fragmentation patterns of common components of MSC

Fig S5 Total ion chromatogram at different blood sampling times. (A) 1h; (B) : 3h; (C) : 6h; (D) : 12h

172 1. Adenine

- 173
- 174 2. Gentisic acid

178 4. Lenticin

186 8. 6-gingerol

.90 10. Uric acid

Fig 58 The metabolism pat

rate 0.4 ml/min

- temperature 30°C; (C) Column temperature 40°C