Supporting information

First GC/MS identification of aqueous ammonia: utilization of ethenesulfonyl fluoride as a

selective and rapid derivatization reagent of ammonia in aqueous media

Ryosuke Shiraki^{*, a, g}, Kengo Wakigawa^g, Shin Ogawa^g, Akinaga Gohda^g, Takeshi Mori^{*, a, b, c},

Yoshiki Katayama^{*, a, b, c, d, e, f}

^a Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku,

Fukuoka 819-0395, Japan

^b Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka,

Nishi-ku, Fukuoka 819-0395, Japan

° Center for future chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

^d International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan

^e Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku,

Fukuoka 812-8532, Japan

^f Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023,

Taiwan

^g Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, 7-7 Higashikoen,

Hakata-ku, Fukuoka 812-8576, Japan

* Corresponding author at: Forensic Science Laboratory, Fukuoka Prefectural Police

Headquarters, 7-7 Higashikoen, Hakata-ku, Fukuoka 812-8576, Japan

and Kyushu University, Graduate School of Systems Life Sciences, 744 Motooka, Nishi-ku,

Fukuoka, 819-0395 Japan. Tel./fax: +81 92 802 2850.

E-mail address: s.ryosuke.8975@kyudai.jp (R.S.); mori.takeshi.880@m.kyushu-u.ac.jp (T.M.); katayama.yoshiki.958@m.kyushu-u.ac.jp (Y. K.).

pН	Buffer solutions	$Mean \pm SD$	Precision (% RSD) ^a
6.0	0.1 mol/L C ₈ H ₅ KO ₄ /NaOH	2.64 ± 0.33	12.5
7.0	0.1 mol/L KH ₂ PO ₄ /NaOH	6.62 ± 0.77	11.6
8.0	0.1 mol/L H ₃ BO ₃ /KCl/NaOH	0.65 ± 0.01	0.4
9.0	0.1 mol/L H ₃ BO ₃ /KCl/NaOH	1.43 ± 0.03	2.4
10.0	0.1 mol/L H ₃ BO ₃ /KCl/NaOH	1.43 ± 0.12	8.7
11.0	0.05 mol/L Na ₂ HPO ₄ /NaOH	5.45 ± 0.57	10.5
12.0	0.05 mol/L Na ₂ HPO ₄ /NaOH	5.12 ± 0.47	9.2
13.0	0.2 mol/L KCl/NaOH	4.66 ± 0.39	8.5

Table S1 Effects of pH on ammonia derivatization.

^a Precision (% relative standard deviation) was defined as (standard deviation/mean peak area ratio

to the IS) \times 100.

Fig. S1. Effect of storage time of the ethyl acetate extract of the derivatized reaction solution on the GC/MS analysis. The extract was stored at room temperature before the analysis.

Fig. S2. Calibration curve showing the peak areas for N-ESF₃ generated from ammonia concentrations ranging from 0.10 to 100.0 μ g/mL.