Rapid Probing of Glucose Influx into Cancer Cell Metabolism: Using Adjuvant and a pH-Dependent Collection of Central Metabolites to Improve In-Cell D-DNP NMR

Francesca Sannelli,a Ke-Chuan Wang,b Pernille Rose Jensen,b and Sebastian Meiera

aDepartment of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark; E-mail: semei@kemi.dtu.dk
bDepartment of Health Technology Technical University of Denmark, Elektrovej 349 2800-Kgs. Lyngby, Denmark; E-mail: peroje@dtu.dk
Fig. S1 The pH invariance of 13C chemical shifts in metabolites containing neither carboxylic acid nor phosphoester group (such as carbohydrates, aldehydes, and alcohols; top), or in α-ketoacids above pH 4.0 (such as α-ketoglutaric acid, pyruvic acid, oxaloacetic acid; bottom). Changes relative to the 13C chemical shifts at pH 8.0 are plotted.
Fig. S2 Distributions of changes in 1H and 13C chemical shift for CH groups in central metabolites upon acidification from pH 8.0 to 7.0, from 7.0 to 6.0, or from 6.0 to 5.0 (top). Distributions and correlations for the acidification from pH 8.0 to 4.0 are shown in the bottom. Redistribution in electron density elicits a weak anti-correlation between 1H and 13C chemical shift changes.
Fig. S3 The pH dependent changes to the 1H chemical shift (relative to the chemical shifts at pH 8.0) for some of the central metabolites exhibiting strongest pH dependence of both 1H and 13C chemical shifts, in comparison to pH invariant 1H chemical shifts in alcohols, polyols, and α-ketoacids (bottom). Deviations up to +0.3 ppm for the 1H chemical shift can be expected for central metabolites upon acidification from pH 8.0 to 4.0.
Fig. S4 Alkali ion (K$^+$) dependent 13C chemical shifts at pH 7.0 for succinate indicate the absence of significant effects of alkali ions on chemical shifts in physiologically relevant regimes. Deviations by more than -3 ppm occur, in contrast, for both 13C chemical shift values upon acidification from 10^{-8} M to 10^{-4} M H$_3$O$^+$ concentration, to chemical shift values of 181.5 and 33.2 ppm.
Fig. S5 Alkali ion (K⁺) dependent ¹³C chemical shifts at pH 7.0 for citrate indicate the absence of significant effects of alkali ions in physiologically relevant regimes. Deviations by -0.6 to -3.6 ppm occur, in contrast, for ¹³C chemical shift values upon acidification from 10⁻⁸ M to 10⁻⁴ M H₃O⁺ concentration, to chemical shift values of 181.8, 178.4, 77.2, and 46.7 ppm. The observations of Fig. S5 and S6 indicate that hydronium ions have significantly stronger effects on chemical shifts than other monovalent Group I cations.
Fig. S6 Time series of 1D 13C NMR spectra recorded as a pseudo-2D spectrum after the injection of hyperpolarized D-[1-13C, 1-2H]glucose to PC3 cancer cells (40 mM phosphate buffer, pH 7.4) in the presence of 20 mM pyruvate. The presence of pyruvate renders influx of glucose into the pentose phosphate pathway visible through 13C signals for 6-phosphogluconate and CO$_2$/HCO$_3^-$ signal. Signals for the primary alcohol groups and phosphoesters in upper glycolysis and for pyruvate and lactate methyl groups are likewise highlighted.
Fig. S7 Projection of 50 1D 13C NMR spectra acquired within 25 seconds after the injection of hyperpolarized D-[1-13C,1-2H]glucose to PC-3 cancer cells (40 mM phosphate buffer, pH 7.4) in the absence (blue) and in the presence of 20 mM pyruvate. Pyruvate and lactate signals are reporters of the cellular redox state, consistent with an enzymatic verification of increased NAD$^{+}$/NADH in the presence of exogeneous pyruvate relative to its absence.