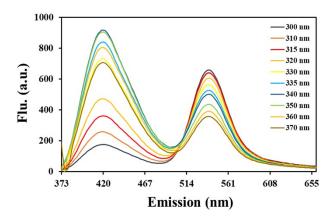
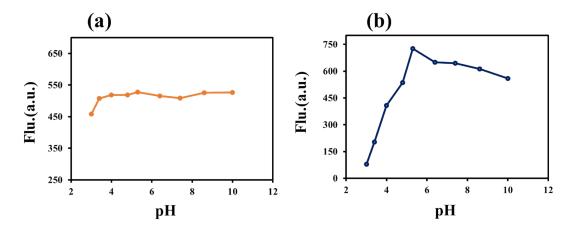
Supplementary Information


A dually emissive MPA-CdTe QDs@N, S-GQDs nanosensor for sensitive and selective detection of 4-Nitrophenole by two-turn-off signals

Zahra Mamipour ^{1,3}, Mohsen Kompany-Zareh ^{1,2*}, Ali Nematollahzadeh³

- 1. Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
- 2. Department of Chemistry, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
- 3. Chemical Engineering Department, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.


E-mail address: mohsenkompany@dal.ca

^{*}Corresponding author:

Figure S1 Fluorescence emission spectra of CdTe QDs @N, S-GQDs nanosensor at different excitation wavelengths.

As depicted in Fig. S2, the fluorescence intensity of both quantum dots rises as the pH level increases. The fluorescence intensity of N, S-GQDs (S2a) is almost stable when the pH is above 4. However, CdTe QDs (S2b) exhibit the strongest fluorescence between pH $5 \sim 6.5$, after which the fluorescence intensity decreases with further increases in pH.

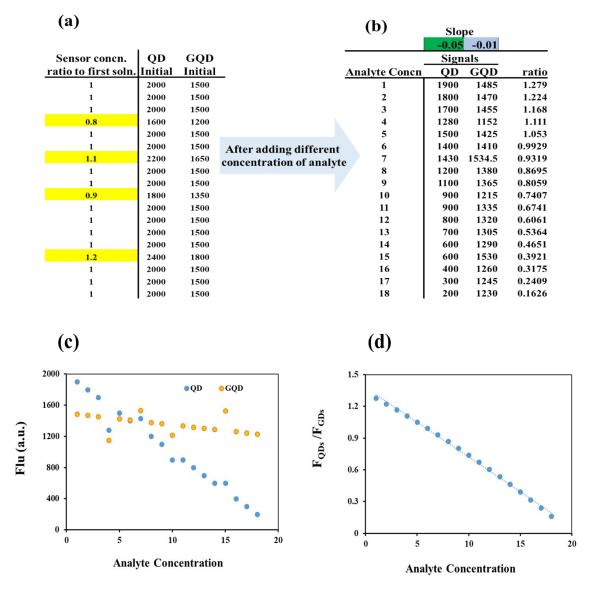


Figure S2 Fluorescence emission spectra of N, S-GQDs (S2a) and CdTe QDs (S2b) at different pH values (3.0, 3.4, 4.0, 4.8, 5.3, 6.4, 7.4, 8.6, 10).

As it is shown in Fig. S3(a) when the added volume of the sensor is changed by mistake or uncertainty (yellow cell), the related calibration curve of single QDs and GQDs fluorescence signal

is changed (Fig. S3c). However, the calibration curve for the ratio of the fluorescence signals (Fig. S3d) remains unchanged. It shows clearly the advantage of using the ratio plot.

The point is that when both the slopes of signal changes are high (similar high values of -0.050 and -0.048 in green and blue cells) the slope of the ratio plot is low (Fig. S4c, d). It would be preferable to have different values for these two slopes. It means a high slope for one (e.g., -0.05) and a low slope for the other (e.g., -0.01).

Figure S3. (a, b) simulated data, (c) calibration curve for single QDs and GQDs fluorescence signal (d) calibration curve for ratio of fluorescence signal (F_{QDs}/F_{GQDs}) .

	(a)	(a) Slope -0.05 -0.039				(b)	Slo	pe -0.048		
		Signals					Signals			
	Analyte Concn	QD	GQD	ratio	•	Analyte Concn	QD	GQD	ratio	
	1	1900	1441.5	1.318	•	1	1900	1428	1.331	
	2	1800	1383	1.302		2	1800	1356	1.327	
	3	1700	1324.5	1.283		3	1700	1284	1.324	
	4	1280	1012.8	1.264		4	1280	969.6	1.320	
	5	1500	1207.5	1.242		5	1500	1140	1.316	
	6	1400	1149	1.218		6	1400	1068	1.311	
	7	1430	1199.55	1.192		7	1430	1095.6	1.305	
	8	1200	1032	1.163		8	1200	924	1.299	
	9	1100	973.5	1.130		9	1100	852	1.291	
	10	900	823.5	1.093		10	900	702	1.282	
	11	900	856.5	1.051		11	900	708	1.271	
	12	800	798	1.002		12	800	636	1.258	
	13	700	739.5	0.9466		13	700	564	1.241	
	14	600	681	0.8811		14	600	492	1.219	
	15	600	747	0.8032		15	600	504	1.190	
	16	400	564	0.7092		16	400	348	1.149	
	17	300	505.5	0.5935		17	300	276	1.087	
	18	200	447	0.4474		18	200	204	0.9804	
	(c)					(d) $y = -0.0154x + 1.3966 (R^2 = 0.7502)$				
Fods /Fgods	1.6 - y = -0.0459x + 1.4711 (R ² = 0.9029) 1.2 - 0.8 - 0.4 -				ø					
					Fods /Fgods	1.2				
\mathbf{F}_{QD}					$\mathbf{F}_{\mathbf{Q}}$	0.8				
						0.4 -				
	0					0 1				
	0 5 10 15 20 Analyte Concn					0 5 10 15 2 Analyte Concn				

Figure S4. (a, b) The simulated data (Fig. S3 b) with different slope values (-0.039 and -0.048) for GQDs and (a, b) Corresponding calibration curve for the F_{QDs}/F_{GQDs} (c, d).