Supporting information

Silver decahedral nanoparticles with uniform and adjustable sizes for surface-enhanced Raman scattering-based thiram residue detection

Hongda Suna, Yu Tianb,\textbullet,*, Jinping Weia, Wenli Weib,\textbullet, Zhichao Zhanga, Shuang Hana,\textbullet, Wenxin Niub,\textbullet,*

aSchool of Science, Shenyang University of Chemical Technology, Shenyang 110142, China

bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

cUniversity of Science and Technology of China, Hefei 230026, China

Corresponding author: Wenxin Niu

E-mail address: niuwx@ciac.ac.cn
Fig. S1. The TEM images of the AgDeNPs obtained by increasing the molar ratio of Ag ions to decahedral seeds. (Scale bar: 200 nm)
The size distributions of the AgDeNPs with different sizes: 47±4, 85±3, 96±4, 112±5, 124±3, 135±5 and 161±4 nm.
Fig. S3 Extinction spectra of nanoparticle solutions of different sizes being diluted, and the extinction value for each sample is 0.23±0.01.

Fig. S4 Comparison of SERS spectra of (a) 4-MBA solution at concentration 1.0×10^{-10} M with Raman spectra of 4-MBA solid powder, (b) thiram solution at concentration 1.0×10^{-7} M with Raman spectra of thiram solid powder.
Fig. S5 The SERS spectra of (a) 4-MBA with concentration of 1.0×10^{-8} M and (b) thiram with concentration of 1.0×10^{-7} M were detected by SERS substrates prepared with freshly synthesized AgDeNPs-1st and that placed for half a year, respectively.

Since we ensure the same detection conditions for the two tests, we use formula $EF = \frac{I_{\text{SERS}}}{I_{\text{Raman}}} \times \frac{C_{\text{Raman}}}{C_{\text{SERS}}}$ to calculate the enhancement factor, which has been deduced by previous work.\(^1,\ 2\) Where I_{SERS} and I_{Raman} represent the SERS intensity of 4-MBA molecules adsorbed on AgDeNPs-1st substrate at 1585 cm\(^{-1}\) and the normal Raman intensity of 4-MBA molecules at 1593 cm\(^{-1}\) respectively, C_{SERS} and C_{Raman} represent the concentration of 4-MBA molecules in SERS and Raman spectra respectively, the C_{Raman} is 0.1 M and the C_{SERS} is 1.0×10^{-10} M. The calculated enhancement factor is 8.7×10^{10}.

Fig. S6 SERS spectra for 4-MBA at concentration 1.0×10^{-10} M and Raman spectra for 4-MBA at concentration 0.1 M.
References
