Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2023

Supporting information

Silver decahedral nanoparticles with uniform and adjustable sizes

for surface-enhanced Raman scattering-based thiram residue

detection

Hongda Sun^a, Yu Tian^{b,c,*}, Jinping Wei^a, Wenli Wei^{b,c}, Zhichao Zhang^a, Shuang Han^{a,*}, Wenxin Niu^{b,c,*}

^aSchool of Science, Shenyang University of Chemical Technology, Shenyang 110142, China

^bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

^cUniversity of Science and Technology of China, Hefei 230026, China

Corresponding author: Wenxin Niu

E-mail address: niuwx@ciac.ac.cn

Fig. S1 The TEM images of the AgDeNPs obtained by increasing the molar ratio of Ag ions to decahedral seeds. (Scale bar: 200 nm)

Fig. S2 The size distributions of the AgDeNPs with different sizes: 47±4, 85±3, 96±4, 112±5, 124±3, 135±5 and 161±4 nm.

Fig. S3 Extinction spectra of nanoparticle solutions of different sizes being diluted, and the extinction value for each sample is 0.23±0.01.

Fig. S4 Comparison of SERS spectra of (a) 4-MBA solution at concentration 1.0×10^{-10} M with Raman spectra of 4-MBA solid powder, (b) thiram solution at concentration 1.0×10^{-7} M with Raman spectra of thiram solid powder.

Fig. S5 The SERS spectra of (a) 4-MBA with concentration of 1.0×10^{-8} M and (b) thiram with concentration of 1.0×10^{-7} M were detected by SERS substrates prepared with freshly synthesized AgDeNPs-1st and that placed for half a year, respectively.

Fig. S6 SERS spectra for 4-MBA at concentration 1.0×10⁻¹⁰ M and Raman spectra for 4-MBA at concentration 0.1 M.

Since we ensure the same detection conditions for the two tests, we use formula EF =(I_{SERS}/I_{Raman}) × (C_{Raman}/C_{SERS}) to calculate the enhancement factor, which has been deduced by previous work.^{1, 2} Where I_{SERS} and I_{Raman} represent the SERS intensity of 4-MBA molecules adsorbed on AgDeNPs-1st substrate at 1585 cm⁻¹ and the normal Raman intensity of 4-MBA molecules at 1593 cm⁻¹ respectively, C_{SERS} and C_{Raman} represent the concentration of 4-MBA molecules in SERS and Raman spectra respectively, the C_{Raman} is 0. 1M and the C_{SERS} is 1.0×10^{-10} M. The calculated enhancement factor is 8.7×10^{10} .

References

- 1. Y. Gu, S. Xu, H. Li, S. Wang, M. Cong, J. R. Lombardi and W. Xu, J. Phys. Chem. Lett., 2013, 4, 3153-3157.
- 2. A. Moeinian, F. N. Gur, J. Gonzalez-Torres, L. Zhou, V. D. Murugesan, A. D. Dashtestani, H. Guo, T. L. Schmidt and S. Strehle, *Nano. Lett.*, 2019, **19**, 1061-1066.