Development and application of a mini-QuEChERS method for the determination of pesticide

residues in anuran adipose tissues

Allyson Leandro Rodrigues dos Santos,^a Igor de Melo Lima,^b Andressa Tironi Vieira,^a Patrícia de Menezes Gondim,^c Paulo Cascon,^c and Anizio Marcio de Faria *^{,a,b}

^aInstitute of Chemistry, Federal University of Uberlândia. 38408-100, Uberlândia, Brazil. ^bInstitute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia. 38304-402, Ituiutaba, Brazil. ^cDepartment of Biology, Federal University of Ceará. 60440-900, Fortaleza, Brazil

Methods for determining pesticide residues in frog tissues

Anuran samples	Extraction Method	Analytica I Techniqu e	Pesticides	Recovery (%)	LoQ (µg kg ⁻¹)	Solvent (volume)	Sample size (mg)	REF
Adipose tissue	QuEChERS	HPLC- DAD	Atrazine Endosulfan Chlorpyriphos Cypermethrin	102.3 86.4 101.8 96.3	10 75 55 55	ACN (1.5 mL)	500	this work
Skin (whole body)	QuEChERS SPE	LC- MS/MS	Acetamiprid Clothianidin Dinotefuran Imidacloprid Nitempy Thiacloprid Thiamethoxam	- 49.2 - - - -	0.03 0.03 0.12 0.03 0.02 0.02 0.06	ACN (20 mL) Hexane (3 mL) Methanol (0.2 mL)	200	[1]
Tissues	SLE	LC-MS	Imidacloprid Atrazine Triadimefon Fipronil Pendimethalin			Methanol (10 mL) Distilled water (10 mL) MTBE (3 mL)	1,000	[2]
Tissues	Ultrasonic extraction (EPA	GC-MS	Tricyclazole Fipronil Diazinon	-		Hexane (25 mL) Acetone	10,000	[3]

Table S1. Parameters of some methods for determining pesticide residues in frog samples reported in the literature.

	Method		Butachlor	-	-	(25 mL)		
	3550)		Bentazone	-	-			
			Fenitrothion	-	-			
						Hexane		
Tissues	SLE	GC-ECD	Various		0.004-	(20 mL)	10.000	[4]
				-	0.018	Acetone	10,000	[4]
						(20 mL)		
				1			1	

SPE: solid-phase extraction, SLE: Solid liquid extraction, LC: liquid chromatography, MS: mass spectrometry, GC: gas chromatography, ECD: electron capture detector, ACN: acetonitrile, MTBE: methyl-tert-butyl ether

Pesticides studied and their physicochemical properties

Pesticides	Molecular structure	Chemical class	Water solubility at 25 °C (mg L ⁻¹)	LogP	Half-life at 25 °C in wet soil (days)	Henry's Law at 20-25 °C (atm-cu m/mol)	
Atrazine	CI CH ₃ N H ₃ C NH NH CH ₃	Triazine	33.00	2.61	28-35	2.6×10 ⁻⁹	
lpha-endosulfan		Organochlorine	0.32 (α)	3.83 (α)	32	6 5×10⁵	
β -endosulfan		organochionne	0.33 (β)	3.62 (β)	52	0.5410	
Chlorpyriphos		Organophospha te	1.40	4.96	33-56	3.6×10 ⁻⁵	
lpha-cypermethrin		Byrathraid	0.01	6.94	18.56	2.4×10-7	
β -cypermethrin		ryieunioid	0.01	0.74	10-20	2.4410	

Table S2. Pesticides under investigation and some chemical and physicochemical properties.⁵

Optimization of mini-QuEChERS method for extraction of pesticide residues from anuran adipose tissue samples

Figure S1. Recovery of pesticides from adipose tissue samples by mini-QuEChERS method. Selection of extraction solvents.

Analytical curves for the studied pesticides

Figure S2. Analytical curves for a) atrazine, b) α -endosulfan, c) β -endosulfan, d) chlorpyriphos, e) α -cypermethrin, f) β cypermethrin, g) θ -cypermethrin, h) ζ -cypermethrin, and i) sum of cypermethrin isomers, obtained by the external standard, inextract addition and matrix-matched calibration methods.

Pesticides		Analytical curves	Range (µg kg⁻¹)	R ²	r
	Solvent	A = 242385*C _{Atrazine} + 7437		0.998	0.999
Atrazine	Extract addition	A = 301152*C _{Atrazine} + 35174	11.1 to 555.6	0.997	0.998
	Matrix-matched	A = 521763*C _{Atrazine} + 26899		0.998	0.999
	Solvent	A = $10854 * C_{\alpha-endosulfan} + 5144$		0.997	0.998
α -endosulfan	Extract addition	A = $8689^{*}C_{\alpha-endosulfan} + 1677$	77.8 to 3888.9	0.992	0.996
	Matrix-matched	A = $8830^{*}C_{\alpha-\text{endosulfan}} + 6053$		0.994	0.997
	Solvent	$A = 12496 * C_{\beta-endosulfan} + 4159$		0.997	0.999
β -endosulfan	Extract addition	A = $10469 C_{\beta-endosulfan} + 5943$	77.8 to 3888.9	0.997	0.998
	Matrix-matched	$A = 9774^*C_{\beta-endosulfan} + 1330$		0.992	0.996
	Solvent	A = 24243*C _{chlorpyriphos} + 6470		0.998	0.999
Chlorpyriphos	Extract addition	A = 21042*C _{chlorpyriphos} + 3796	55.6 to 2777.8	0.999	0.999
	Matrix-matched	A = 32307*C _{chlorpyriphos} + 3337		0.998	0.999
	Solvent	A = $12488 C_{\alpha-cypermethrin} + 1886$		0.994	0.997
lpha-cypermethrin	Extract addition	$A = 15334 C_{\alpha-cypermethrin} + 444$	55.6 to 2777.8	0.992	0.996
	Matrix-matched	A = $12238 C_{\alpha-cypermethrin} + 1131$		0.997	0.998
	Solvent	$A = 18825 * C_{\beta-cypermethrin} + 1745$		0.993	0.997
β -cypermethrin	Extract addition	$A = 18814 * C_{\beta-cypermethrin} - 328$	55.6 to 2777.8	0.997	0.999
	Matrix-matched	$A = 22172 C_{\beta-cypermethrin} + 2175$		0.996	0.998
	Solvent	$A = 14629 C_{\theta-cypermethrin} + 104$		0.992	0.996
θ -cypermethrin	Extract addition	$A = 12549 * C_{\theta - cypermethrin} + 153$	55.6 to 2777.8	0.994	0.997
	Matrix-matched	$A = 16975 * C_{\theta - cypermethrin} + 1223$		0.995	0.997
	Solvent	$A = 17755 C_{\zeta-cypermethrin} + 174$		0.992	0.996
ζ-cypermethrin	Extract addition	A = 13513*C _{ζ-cypermethrin} + 929	55.6 to 2777.8	0.994	0.997
	Matrix-matched	A = 21421*C _{ζ-cypermethrin} + 2116		0.996	0.998
Cypermethrin	Solvent	$A = 48597 * C_{sum-cypermethrin} + 1977$		0.995	0.998
(Sum of α, β, θ,	Extract addition	$A = 41668 * C_{sum-cypermethrin} + 2259$	55.6 to 2777.8	0.996	0.998
and ζ)	Matrix-matched	$A = 50249 * C_{sum-cypermethrin} + 3934$		0.997	0.999

Table S3. Analytical parameters of calibration curves for the pesticides in anuran adipose tissue samples.

		Concentration of pesticide residues (µg kg ⁻¹)								
Sample	Species	ATRA	α-ENDO	β-ENDO	CHLOR	α-CYPER	β- CYPER	θ- CYPER	ζ- CYPER	
1	L. Macrosternum	-	-	-	-	-	-	-	-	
2	L. Macrosternum	-	-	-	-	-	-	-	-	
3	L. Macrosternum	-	-	-	-	-	-	-	-	
4	L. Macrosternum	-	-	-	-	-	-	-	-	
5	L. Macrosternum	-	-	-	-	-	-	-	-	
6	L. Macrosternum	-	-	-	-	-	-	-	-	
7	L. Macrosternum	-	-	-	-	-	-	-	-	
8	L. Macrosternum	-	-	-	-	-	-	-	-	
9	S. x-signatus*	-	-	-	-	-	-	-	-	
10	S. x-signatus*	-	-	-	-	-	-	-	-	
11	S. x-signatus*	-	-	-	-	-	-	-	-	
12	L. Macrosternum	-	-	-	-	-	-	-	-	
13	L. Macrosternum	-	-	-	-	-	-	-	-	
14	L. Macrosternum	-	-	-	-	-	-	-	-	
15	L. Macrosternum	-	-	-	-	-	-	-	-	
16	L. Macrosternum	-	-	-	-	-	-	-	-	
17	L. Macrosternum	-	-	-	-	-	-	-	-	
18	L. Macrosternum	-	-	-	-	-	-	-	-	
19	L. Macrosternum	-	-	-	-	-	-	-	-	
20	L. Macrosternum	-	-	-	-	-	-	-	-	
21	L. Macrosternum	-	1.2	8.4	-	-	-	-	-	
22	L. Macrosternum	-	-	-	-	-	-	-	-	
23	L. Macrosternum	-	-	-	-	-	-	-	-	
24	L. Macrosternum	-	-	1.6	-	-	-	-	-	
25	S. x-signatus*	-	-	-	-	-	-	-	-	
26	S. x-signatus*	-	5.0	-	-	-	-	-	-	
27	S. x-signatus*	-	-	-	-	-	-	-	-	
28	L. Macrosternum	-	-	1.3	-	-	-	-	-	
29	L. Macrosternum	-	-	-	-	-	-	-	-	
30	L. Macrosternum	-	-	-	-	-	-	-	-	
31	L. Macrosternum	-	1.6	-	-	-	-	-	-	
32	L. Macrosternum	-	-	-	-	-	-	-	-	
33	L. Macrosternum	-	4.7	2.2	1.9	-	-	-	-	
34	L. Macrosternum	-	2.8	2.7	-	-	-	-	-	
35	L. Macrosternum	-	-	-	2.5	-	-	-	-	
36	L. Macrosternum	-	5.7	1.2	-	-	-	-	-	
37	L. Macrosternum	-	-	4.9	-	-	-	-	-	
38	L. Macrosternum	-	-	-	-	-	-	-	-	
39	L. Macrosternum	-	-	-	-	-	-	-	-	
40	L. Macrosternum	-	2.1	6.3	-	-	-	-	-	
41	L. Macrosternum	-	-	-	-	-	-	-	-	

Table S4. Pesticide residues in adipose tissue samples from two anuran species determined by the mini-QuEChERS-HPLC-DAD method and confirmed by LC-MS/MS analysis.

42	L. Macrosternum	-	-	-	-	-	-	-	-
43	L. Macrosternum	-	-	-	-	-	-	-	-
44	L. Macrosternum	-	3.6	1.6	-	-	-	-	-
45	L. Macrosternum	-	-	-	-	-	-	-	-
46	L. Macrosternum	-	-	-	-	-	-	-	-
47	L. Macrosternum	-	-	-	-	-	-	-	-
48	L. Macrosternum	-	-	-	-	-	-	-	-
49	L. Macrosternum	-	5.5	2.7	-	-	-	-	-
50	L. Macrosternum	-	-	-	-	-	-	-	-
51	L. Macrosternum	-	2.5	-	-	-	-	-	-
52	L. Macrosternum	-	-	-	-	-	-	-	-
53	L. Macrosternum	-	-	-	-	-	-	-	-
54	L. Macrosternum	-	4.2	2.5	-	-	-	-	-
55	L. Macrosternum	-	-	-	-	-	-	-	-
56	L. Macrosternum	-	-	-	-	-	-	-	-
57	L. Macrosternum	-	-	-	-	-	-	-	-
58	L. Macrosternum	-	4.4	3.9	-	-	-	-	-
59	L. Macrosternum	-	2.0	1.4	-	-	-	-	-
60	L. Macrosternum	-	1.7	1.4	-	-	-	-	-
61	L. Macrosternum	-	2.9	5.8	-	-	-	-	-
62	L. Macrosternum	-	-	-	-	-	-	-	-
63	L. Macrosternum	-	-	-	-	-	-	-	-
64	L. Macrosternum	-	-	-	-	-	-	-	-
65	L. Macrosternum	-	2.5	-	1.6	-	-	-	-
66	L. Macrosternum*	-	-	-	-	-	-	-	-
67	L. Macrosternum*	-	-	-	-	-	-	-	-

ATRA: atrazine, ENDO: endosulfan, CHLOR: chlorpyriphos, CYPER: cypermethrin. *: pooled samples

References

- 1. S. Shiya, F. Nishibe, Y. B. Yohannes, M. Ishizuka, S. M. Nakayama, Y. Ikenaka, *Aquatic Toxicology*, 2023, **257**, 106437.
- R. J. van Meter, D. A. Glinski, S. T. Purucker, W. M. Henderson, *Environmental Toxicology and Chemistry*, 2022, 41, 122-133.
- 3. N. Shojaei, S. Naderi, E. Yasari, N. Moradi, *Environmental Science and Pollution Research*, 2021, **28**, 33557-33569.
- O. Edo-Taiwo, M. S. O. Aisien, Journal of Applied Sciences and Environmental Management, 2023, 27, 509-517.
- PubChem, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health. Available at: <u>https://pubchem.ncbi.nlm.nih.gov/</u>. Accessed in: Sep, 2023.