Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Crystal Plane Integrated Strontium Oxide/Hexagonal Boron Nitride Nanohybrid For Rapid Electrochemical Sensing of Anticancer Drug In Human Blood Serum Sample

Magesh Kumar Muthukumaran, Muthukumar Govindaraj, Bharathi Kannan Raja, and

Arockia Selvi J*

Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203,

Tamil Nadu, India

*Corresponding author

Email: arockiaj@srmist.edu.in (J. Arockia Selvi)

2.1. Materials and reagents

All the chemicals and reagents [bulk boron nitride (h-BN) (\geq 99% SRL), strontium cholride hexahydrate (SrCl₂.6H₂O) (\geq 99% SRL), sodium hydroxide (NaOH) (\geq 98% FISHER), acetonitrile, ethanol, methanol, 5-fluorouracil (C₄H₃FN₂O₂) (\geq 99% SRL), uric acid (C₅H₄N₄O₃) (\geq 99% SRL), lactose (C₁₂H₂₂O₁₁) (\geq 98% SRL), oxalic acid (\geq 99.5% AR), ascorbic acid (C₆H₈O₆) (\geq 99.7% SRL), dopamine (C₈H₁₁NO₂) (\geq 99% SRL), L-cysteine (C₃H₇NO₂S) (\geq 99% SRL), glucose (C₆H₁₂O₆) (\geq 99% SRL), potassium ferricyanide (C₆N₆FeK₃) (\geq 99% SRL), potassium ferrocyanide (C₆FeK₄N₆) (\geq 99% SRL), and disodium hydrogen phosphate (Na₂HPO₄) (\geq 99% SRL)] are purchased in Sigma Aldrich and Alfa Aesar. To create a stock solution, ultrapure deionized water was used. NaH₂PO₄ and Na₂HPO₄ were combined to create 0.1 M phosphate buffer (PBS) (pH = 7.0) to detect 5-Fu. The human blood serum sample was collected from SRM Medical College Hospital and Research Center, Kattankulathur, Tamil Nadu, for real sample analysis. All the experiments were done using Milli-Q-water (18.2 MΩ cm @ 25 ± 2 °C).

2.2. Materials characterization

High-resolution scanning electron microscopy (HR-SEM, Thermoscientific Apreo S) and transmission electron microscopy (TEM, JEM-2100 Plus, JEOL) were utilized to predict the morphological, surface properties, and chemical content, and the selected area electron diffraction (SAED) pattern of produced SrO, h-BN, and SrO/h-BN hybrid. Energy dispersive spectroscopy (EDS-JEM-2100 Plus, JEOL, and Thermoscientific Apreo S) was utilized for elemental and chemical composition. The crystalline nature of the synthesized compound was examined by using X-ray diffraction spectroscopy (XRD system-X'pert powder, with Cu-Ka radiation ($\lambda = 0.154$ nm) Malvern Panalytical, United Kingdom) at 45 kV (tension) and 40 mA (current) with 0.02° per step scan and 1° per min speed. The Raman Spectroscopy technique analyzed the Vibrational modes of the synthesized materials. The Oxidation state of the prepared SrO/h-BN composite was analyzed by XPS analysis (). The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and amperometry (*i*-*t* curve) studies were carried out using a CHI electrochemical workstation (CHI 760E, USA). All the measurements were performed at room temperature using a threeelectrode setup. The counter, reference, and working electrodes were platinum wire (Pt), Ag/AgCl (3 M KCl), and glassy carbon electrode (GCE), respectively.

Figure S1. (A) XRD spectra of different calcination of strontium oxide and **(B)** different ratios (1:1, 1:2, 2:1) of strontium oxide: h-boron nitride.

Figure S2. XRD spectra of Bulk h-BN and h-BN sheet

Figure S3. Raman spectra of different ratios of SrO:h-BN (1:1), (1:2) and (2:1)

Figure S4. TEM images of a) & b) SrO/h-BN

Figure S5. SAED pattern and lattice fringes of SrO (a, d), h-BN (b, e) and SrO/h-BN (c, f).

Figure S6. XPS spectrum of a) B 1s, b) N 1s, c) Sr 3d, d) O 1s and e) Survey spectrum of SrO/h-BN composite

Figure S7. (A) Histogram of pH vs. current density and (B) the Catalyst ratio vs. current density.

Figure S8. (A) Repeatability study (inset: histogram of 5 repetitive runs of electrodes and **(B)** Stability study of SrO/h-BN/GCE with 5-Fu by DPV.

Figure S9. The kinetic plot of real sample analysis with current density vs. concentration

S.NO	Modified	Epa	Epc	Rct	J _{pa}	J _{pc}	Ep
	Electrodes	(V)	(V)	(ohm)	(mA/cm ²)	(mA/cm ²)	(mV)
1	bare GCE	320	090	3336	0.607	-0.633	230
2	SrO/GCE	280	087	1756	0.893	-0.926	193
3	h-BN/GCE	260	094	1650	0.883	-0.931	166
4	SrO/h-BN/GCE	245	132	506	1.010	-1.103	113

Table S1. CV's profiles of all modified charge transfer electrodes, E_p, potentials and current densities of bare GCE, SrO/GCE, h-BN/GCE and SrO/h-BN/GCE.