Supplementary Information

Precise evaluation of batch adsorption kinetics of plant total polyphenols based

on a flow-injection online spectrophotometric method

Gaowei Guo^a, Turghun Muhammad^{a,b*}, Zulihumaer Aimaiti^a, Almire Dolkun^a, Mei Tian^a, Qian Zhao^a,

Aikebaier Reheman^b

Captions

- 1. Specification parameters of the resins tested
- 2. Fiber-optic sensing system
- 3. Determination of total polyphenol content
- 4. Resin screening
- 5. Adsorption/desorption kinetic models of SCTPs on HPD-500 resin
- 6. Adsorption and desorption kinetic curves of PPTPs on HPD-500 resin
- 7. Adsorption/desorption kinetic models of PPTPs on HPD-500 resin
- 8. Reliability analysis

aState Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry,

Xinjiang University, Urumqi, 830017, Xinjiang, PR China.

^bFujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, F ujian 352100, PR China;

*Corresponding author: Turghun Muhammad, e-mail: turghunm@xju.edu.cn

Turghun Muhammad: https://orcid.org/0000-0001-5562-9365

1. Specification parameters of the resins tested

Resins	Particle size (mm)	Surface area (m ² /g)	Average pore diameter (nm)	Polarity
D101	0.3-1.25	550-600	10-11	Non-polar
AB-8	0.3-1.25	480-520	13-14	Weak-polar
ADS-17	0.3-1.2	90-150	25-30	Moderate polar
HPD-100	0.3-1.25	650-700	8.5-9	Non-polar
HPD-300	0.3-1.2	800-870	5-5.5	Non-polar
HPD-500	0.3-1.2	500-550	55-75	Polar
HPD-600	0.3-1.2	550-600	8	Strong Polar
HPD-750	0.3-1.25	650-700	8.5-9	Moderate polar
NKA-9	0.3-1.25	250-290	15.5-16.5	Strong Polar
X-5	0.3-1.2	500-600	29-30	Weak-polar

Table S1Specification parameters of the resins tested.

2. Fiber-optic sensing system

The fiber-optic sensing detection system consists of a stable and continuous source of spectrum light (190-2500 nm) which was provided by a DH-2000 Deuterium-Halogen Light Source. A USB2000+ Fiber Optic spectrometer and the light source were connected by two UV-grade optical fibers (400 μ m diameter, 2 m long) to a FIA-Z-SMA-Peek Lensed flow cell with 10 mm of optical path length and 60 μ L of internal volume (all from Ocean Optics, Dunedin, Florida, USA). First, the light source was turned on for at least 30 min to warm-up. The spectra suite software was activated and the average number of times was adjusted to 10 ms, and the smoothing width was set to 5. Keeping the carrier stream running, the signal intensity level was adjusted to 3500 counts at the corresponding detection wavelength (765 nm), then reference and dark spectra were stored.^{1,2} Afterwards, the timing diagram was opened to choose and save the acquisition data mode, detection wavelength and other parameters.

3. Determination of total polyphenol content

No.	Sample	TPCs determined by	TPCs determined by FIA
		conventional method \pm SD	method \pm SD
1	Alfalfa **	9.484 ± 0.592	7.302 ± 0.0098
2	Elaeagnus angustifolia **	11.25 ± 0.564	10.53 ± 0.340
3	Apple peel **	18.36 ± 0.917	15.12 ± 0.197
4	Yellow chrysanthemum ^{ns}	49.18 ± 2.84	52.33 ± 0.381
5	Dracocephalum moldavica L ^{ns}	49.88 ± 1.935	52.96 ± 0.328
6	White chrysanthemum ^{ns}	54.07 ± 1.045	56.67 ± 0.263
7	Dried mulberry ns	60.01 ± 2.547	62.87 ± 0.275
8	Black lycium barbarum **	73.37 ± 3.525	70.28 ± 0.148
9	Snow chrysanthemum **	162.3 ± 4.112	152.6 ± 0.374
10	Pomegranate peel **	224.9 ± 15.3	222.3 ± 0.374

Table S2Comparison of TPCs in several plants determined by the two methods (mg/g, n=6).

Note: P > 0.05 for ns, no significant difference. $P \le 0.01$ for **, extremely significant difference.

4. Resin screening

Fig. S1 Adsorption/desorption capacities and desorption ratio of PPTPs on different resins. (Initial concentration/volume of PPTP extract: 161.9 mg/L 200 mL, adsorption solvent: deionized water, desorption solvent: 60% ethanol 100 mL).

5. Adsorption/desorption kinetic models of SCTPs on HPD-500 resin

Fig. S2 Linear fitting of the adsorption kinetics of SCTPs on HPD-500 resin: $(a-a_1)$. PFO model;

(b-b₁). Elovich model.

Fig. S3 Nonlinear fitting of the adsorption kinetics of SCTPs on HPD-500 resin: (a-a₁). PFO model; (b-b₁). PSO model; (c-c₁). Elovich model.

				PFO			PSO	
Detection	Adsorbent	$q_{ m exp}$	q_{cal}	$k_1 \times 10^2$	R ²	$q_{ m cal}$	k ₂ ×10 ⁻³	R ²
methods	(g)	(mg/g)	(mg/g)	(1/min)		(mg/g)	[g/(mg·min)]	
conventional	0.5	46.01	43.01	0.662	0.9641	49.04	1.776	0.9916
	1.0	28.12	27.20	1.0063	0.9623	30.28	5.119	0.9911
	1.5	20.04	19.50	1.639	0.9676	21.38	11.5	0.9905
FIA	0.5	42.53	37.13	0.648	0.9607	43.76	1.64	0.9844
	1.0	23.17	21.72	0.679	0.9804	25.31	3.08	0.9957
	1.5	18.34	17.39	0.558	0.9821	20.66	2.98	0.9946

 Table S3
 Nonlinear fitting parameters of adsorption kinetic models for SCTPs on HPD-500 resin.

Fig. S4 Linear fitting of the desorption kinetics of SCTPs on HPD-500 resin: (a-a₁). PFO model;(b-b₁). Elovich model.

				PFO			PSO	
Detection	Adsorbent	$q_{ m exp}$	$q_{ m cal}$	$k_1 \times 10$	R ²	$q_{ m cal}$	k ₂ ×10 ⁻³	R ²
methods	(g)	(mg/g)	(mg/g)	(1/min)		(mg/g)	[g/(mg·min)]	
	0.5	44.38	61.44	2.026	0.9413	40.50	0.3556	0.9817
conventional	1.0	20.51	27.41	1.787	0.9801	18.94	8.405	0.9843
	1.5	15.46	22.61	1.901	0.9127	14.32	10.97	0.9804
	0.5	28.56	21.01	1.410	0.9484	33.44	5.74	0.9813
FIA	1.0	14.33	7.514	1.367	0.9474	15.81	19.8	0.9900
	1.5	10.04	4.297	1.366	0.9233	10.83	37.8	0.9932

Table S4Linear fitting parameters of desorption kinetic models for SCTPs on HPD-500 resin.

Table S5IPD desorption kinetic model parameters of SCTPs on HPD-500 resin.

Detection	Adsorbent	K _{id1}	\mathbb{R}^2	K _{id2}	R ²	K _{id3}	\mathbb{R}^2
methods	(g)	$[mg/(mL \cdot min^{1/2})]$		$[mg/(mL \cdot min^{1/2})]$		$[mg/(mL \cdot min^{1/2})]$	
	0.5	27.57	0.9930	3.498	0.8929	0.1863	0.8034
conventional	1.0	12.80	0.9712	1.897	0.9256	0.3859	0.9897
	1.5	8.258	0.9704	0.8824	0.9932	0.5844	0.8480
	0.5	9.677	0.8059	6.833	0.9533	0.6312	0.8957
FIA	1.0	7.118	0.9247	1.514	0.7919	0.2997	0.9125
	1.5	4.797	0.8873	0.4664	0.8909	0.1603	0.9507

Fig. S5 Nonlinear fitting of the desorption kinetics of SCTPs on HPD-500 resin: (a-a₁). PFO model; (b-b₁). PSO model; (c-c₁). Elovich model.

				PFO			PSO	
Detection	Adsorbent	$q_{ m exp}$	$q_{ m cal}$	$k_1 \times 10$	R ²	$q_{ m cal}$	$k_2 \times 10^2$	R ²
methods	(g)	(mg/g)	(mg/g)	(1/min)		(mg/g)	[g/(mg·min)]	
	0.5	44.38	47.60	1.147	0.8517	62.51	0.163	0.8058
conventional	1.0	20.51	22.12	1.060	0.8456	29.60	0.306	0.8062
	1.5	15.46	16.58	1.091	0.8733	21.96	0.434	0.8309
	0.5	28.56	28.96	1.536	0.9778	34.83	0.497	0.9353
FIA	1.0	14.33	14.26	2.116	0.9623	16.48	1.621	0.9039
	1.5	10.04	9.985	2.398	0.9538	11.35	2.827	0.8848

 Table S6
 Nonlinear fitting parameters of desorption kinetic models for SCTPs on HPD-500 resin.

6. Adsorption and desorption kinetic curves of PPTPs on HPD-500 resin

Fig. S6 Adsorption and desorption kinetic curves of PPTPs on HPD-500 resin: (a-b). obtained by conventional spectrophotometric method; (a₁-b₁). obtained by FIA spectrophotometric method.

7. Adsorption/desorption kinetic models of PPTPs on HPD-500 resin

Fig. S7 Linear fitting of the adsorption kinetics of PPTPs on HPD-500 resin: (a-a₁). PFO model;

(b-b₁). PSO model; (c-c₁). Elovich model; (d-d₁). IPD model.

				PFO			PSO	
Detection	Adsorbent	$q_{ m exp}$	$q_{ m cal}$	$k_1 \times 10^2$	R ²	$q_{ m cal}$	k ₂ ×10 ⁻⁴	R ²
methods	(g)	(mg/g)	(mg/g)	(1/min)		(mg/g)	[g/(mg·min)]	
conventional	0.5	33.30	20.96	0.4612	0.9684	34.52	4.675	0.9995
	1.0	22.94	11.25	0.4634	0.9080	23.33	10.54	0.9997
	1.5	17.37	7.591	0.4562	0.8670	17.76	15.09	0.9999
	0.5	35.04	31.04	0.3592	0.9630	38.17	1.865	0.9952
FIA	1.0	21.83	19.94	0.3598	0.8889	23.10	3.272	0.9893
	1.5	15.49	14.98	0.4002	0.8878	16.50	4.573	0.9875

Table S7Linear fitting parameters of adsorption kinetic models for PPTPs on HPD-500 resin.

Table S8IPD adsorption kinetic model parameters of PPTPs on HPD-500 resin.

Detection	Adsorbent	K _{id1}	R ²	K _{id2}	R ²	K _{id3}	R ²
methods	(g)	$[mg/(mL \cdot min^{1/2})]$		$[mg/(mL \cdot min^{1/2})]$		$[mg/(mL \cdot min^{1/2})]$	
	0.5	1.702	0.8257	1.571	0.9614	0.1442	0.9137
conventional	1.0	1.530	0.8019	0.9494	0.9293	0.06630	0.9018
	1.5	1.322	0.7425	0.6517	0.9809	0.05100	0.9957
	0.5	1.564	0.9827	0.7947	0.9799	0.4223	0.9606
FIA	1.0	0.961	0.9576	0.4225	0.9821	0.4176	0.9252
	1.5	0.6940	0.9785	0.3038	0.9963	0.2539	0.8582

Fig. S8 Linear fitting of the desorption kinetics of PPTPs on HPD-500 resin: (a-a₁). PFO model;

(b-b₁). PSO model; (c-c₁). Elovich model; (d-d₁). IPD model.

				PFO			PSO	
Detection methods	Adsorbent (g)	$q_{\rm exp}$ (mg/g)	$q_{\rm cal}$ (mg/g)	$k_1 \times 10$ (1/min)	R ²	$q_{\rm cal}$ (mg/g)	$k_2 \times 10$ [g/(mg·min)]	R ²
	0.5	28.61	7.592	1.340	0.9723	29.32	0.3556	0.9999
conventional	1.0	17.19	3.898	1.072	0.9692	17.60	0.5721	0.9991
	1.5	12.49	3.901	1.442	0.9862	12.91	0.7188	0.9999
	0.5	28.31	21.92	1.672	0.9110	24.55	0.1217	0.9723
FIA	1.0	14.21	8.923	1.571	0.8913	12.11	0.2790	0.9765
	1.5	9.669	4.912	1.267	0.8406	8.179	0.4201	0.9787

Table S9Linear fitting parameters of desorption kinetic models for PPTPs on HPD-500 resin.

Table S10IPD desorption kinetic model parameters of PPTPs on HPD-500 resin.

Detection	Adsorbent	K _{id1}	R ²	K _{id2}	R ²	K _{id3}	R ²
methods	(g)	$[mg/(mL \cdot min^{1/2})]$		$[mg/(mL \cdot min^{1/2})]$		$[mg/(mL \cdot min^{1/2})]$	
	0.5	3.201	0.9999	0.5963	0.6407	0.2489	0.9368
conventional	1.0	1.966	0.9740	0.6870	0.7797	0.2704	0.9010
	1.5	1.471	0.9533	0.5306	0.9770	0.1581	0.9179
	0.5	19.73	0.9586	4.432	0.9508	0.4424	0.9723
FIA	1.0	10.88	0.9997	2.052	0.8946	0.2229	0.8078
	1.5	6.624	0.9752	1.086	0.8078	0.1908	0.9586

Fig. S9 Nonlinear fitting of the adsorption kinetics of PPTPs on HPD-500 resin: (a-a₁). PFO model; (b-b₁). PSO model; (c-c₁). Elovich model.

				PFO			PSO	
Detection	Adsorbent	$q_{ m exp}$	$q_{ m cal}$	$k_1 \times 10^2$	R ²	$q_{ m cal}$	k ₂ ×10 ⁻³	R ²
methods	(g)	(mg/g)	(mg/g)	(1/min)		(mg/g)	[g/(mg·min)]	
conventional	0.5	33.30	31.50	1.043	0.8881	34.27	4.750	0.9611
	1.0	22.94	21.32	1.644	0.8682	23.12	11.2	0.9698
	1.5	17.37	16.19	1.924	0.8751	17.59	16.7	0.9667
	0.5	35.04	32.41	0.591	0.9616	38.03	1.78	0.9882
FIA	1.0	21.83	19.42	0.652	0.9346	22.61	3.78	0.9752
	1.5	15.49	13.84	0.650	0.9297	16.13	4.71	0.9729

 Table S11
 Nonlinear fitting parameters of adsorption kinetic models for PPTPs on HPD-500 resin.

Fig. S10 Nonlinear fitting of the desorption kinetics of PPTPs on HPD-500 resin: (a-a₁). PFO model; (b-b₁). PSO model; (c-c₁). Elovich model.

				PFO			PSO	
Detection	Adsorbent	$q_{ m exp}$	$q_{ m cal}$	$k_1 \times 10$	R ²	$q_{ m cal}$	$k_2 \times 10$	R ²
methods	(g)	(mg/g)	(mg/g)	(1/min)		(mg/g)	[g/(mg·min)]	
conventional	0.5	28.61	27.81	5.092	0.8017	29.34	0.3650	0.985
	1.0	17.19	16.61	5.208	0.8207	17.50	0.6333	0.9920
	1.5	12.49	12.15	4.7009	0.8322	12.90	0.7230	0.9955
	0.5	28.31	29.26	1.522	0.8721	35.96	0.437	0.8133
FIA	1.0	14.21	14.49	1.748	0.8690	17.41	0.1100	0.8031
	1.5	9.669	9.727	1.884	0.8969	11.52	0.1877	0.8290

 Table S12
 Nonlinear fitting parameters of desorption kinetic models for PPTPs on HPD-500 resin.

8. Reliability analysis

Fig. S11 (a). Comparison of conventional and FIA spectrophotometric methods for the determination of plant TPCs (b) Linear fitting of conventional and FIA spectrophotometric methods for the adsorption capacities of SCTPs on HPD-500 resin.

	Absorbance											_
Day	1	2	3	4	5	6	7	8	9	10	Average	RSD/%
1	0.522	0.520	0.523	0.524	0.527	0.520	0.517	0.520	0.527	0.525	0.523	0.6
2	0.523	0.523	0.523	0.519	0.519	0.518	0.524	0.518	0.519	0.522	0.521	0.5
3	0.521	0.535	0.532	0.534	0.526	0.528	0.526	0.530	0.535	0.523	0.529	0.9
4	0.538	0.535	0.539	0.541	0.532	0.523	0.530	0.526	0.521	0.524	0.531	1.4
5	0.525	0.517	0.520	0.521	0.526	0.529	0.518	0.522	0.520	0.531	0.523	0.9

Table S13 Intraday (n = 10) and interday (n = 5) assays.

References

- 1 F. Gao, T. Muhammad, M. Bakri, P. Pataer and L. Chen, ACS Omega, 2018, 3, 10891–10897.
- 2 T. Muhammad, O. Yimit, Y. Turahun, K. Muhammad, Y. Uludağ and Z. Zhao, *J. Sep. Sci.*, 2014, **37**, 1873–1879.