Supporting information

Solvent Directed Morphogenesis of Peptidic-Benzimidazolium Dipodal Receptor: Ratiometric Detection and Catalytic Degradation of Ochratoxin A

Sanjeev Saini^{a,c}, Arun Sharma^a, Navneet Kaur^{b*}, Narinder Singh^{a*}

^a Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India

^b Department of Chemistry, Panjab University, Chandigarh 160014, India

^c Department of Chemistry, School of Physical Sciences, DIT University, Dehradun 248009, India

Corresponding author email: nsingh@iitrpr.ac.in; navneetkaur@pu.ac.in

Contents:

Experimental details and figure assignment	Page No.
Figure SF1: ¹ H NMR spectrum of peptidic-benzimidazole dipodal receptor (SS4).	2
Figure SF2-SF3: ¹³ C NMR and mass data of SS4.	3
Figure SF4-SF5: ¹ H NMR data of compound 2 and 3.	4
Figure SF6: Fluorescence emission profile of samples on addition of Ochratoxin A	5
Figure SF7-SF10: UV-Visible absorption study of SS4 (ONPs) with toxin.	6-7
Figure SF11-SF12: Fluorescence study of SS4 (ONPs) with toxin.	8
Figure SF13: LCMS data of SS4 and Ochratoxin A	9
Figure SF14: Relative fluorescence intensity of sensing probe at different pH	9
Figure SF15: Benesi–Hildebrand plot from UV/vis titration data of SS4 (50 µM) with OTA.	10
Table S1: Ochratoxin A recovery experiment in spiked samples.	11
Table S2: Literature comparison.	12

Chemical structure of Dipodal receptor (SS4)

Figure SF1: ¹H NMR spectrum of peptidic-benzimidazole dipodal receptor (SS4).

Figure SF2: ¹³C NMR spectrum of peptidic-benzimidazole dipodal receptor (SS4).

Figure SF3: Mass data of peptidic-benzimidazole dipodal receptor (SS4).

Figure SF4: ¹H NMR data of compound (2).

Figure SF5: ¹H NMR data of compound (3).

Scheme S1 (A) and (B): Reaction scheme for the preparation of dipeptide (2) and di-acid (3), respectively.

Figure SF6: A) Fluorescence emission profile of sample 4 on addition of Ochratoxin A. **B)** Fluorescence emission profile of sample 2 on addition of Ochratoxin A. **C)** Fluorescence emission profile of sample 1 on addition of Ochratoxin A. **D)** Fluorescence emission profile of sample 3 on addition of Ochratoxin A.

Figure SF7: UV-Visible absorption study of SS4 (ONPs) with Fumonisin B1.

Figure SF8: UV-Visible absorption study of SS4 (ONPs) with Patulin.

Figure SF9: UV-Visible absorption study of SS4 (ONPs) with Deoxynivalenol.

Figure SF10: UV-Visible absorption study of SS4 (ONPs) with Zearalenone and Okadaic acid.

Figure SF11: Fluorescence emission profile of SS4 (ONPs) on addition of various toxins.

Figure SF12: Fluorescence emission profile of SS4 (ONPs) on addition of Zearalenone and Okadaic acid.

Figure SF13: LCMS data showing m/z value of dipodal receptor (SS4) and ochratoxin A.

Figure SF14: Relative fluorescence intensity of sensing probe at different pH

The binding constant was calculated using Benesi-Hildebrand Equation stated below.

$$1/(A-A_o) = 1/ \{K (A_{max} - A_o) [OTA]\} + 1/ [A_{max} - A_o]$$

Here Ao is the absorbance of receptor (SS4) in the absence of OTA, A is the absorbance recorded in the presence of OTA, A_{max} is absorbance in presence of added OTA]_{max} and K_a is the association constant. The association constant (K_a) could be determined from the slope of the straight line of the plot of 1/(A-Ao) against 1/[OTA] and is found to be $8.59 \times 10^4 \text{ M}^{-1}$

Figure SF15: Benesi–Hildebrand plot from UV/vis titration data of SS4 (50 µM) with OTA.

The following equation was used to calculate the quantum yields by comparison with fluorescein ($\Phi s = 0.97$ in basic ethanol) as a reference.

$$\Phi_{\rm X} = \Phi_{\rm S} \times \left(\frac{lx}{ls}\right) \times \left(\frac{As}{Ax}\right) \times \left(\frac{nx}{ns}\right)^2$$

where A is the absorbance, n is the solvent's refractive index, Φ is the quantum yield, I is the integrated area under the fluorescence emission curve, and x and s, respectively, denote the unknown and standard solution.

Using the aforementioned equation, we were able to compute the quantum yields of SS4 and SS4-OTA, which come out to be 0.51 and 0.53 respectively.

Table S1: Ochratoxin A recovery experiment in spiked samples.

S. No.	Sample	Spiked	Found	Recovery	RSD
		concentration	concentration	(%)	
1.					
		1.5 μM	1.54 μM	102.6	3.21
		2.0 μΜ	1.96 µM	98	2.75
		2.5 μΜ	2.47µM	98.8	1.86
2.					
		1.5 μM	1.48 µM	98.6	2.38
		2.0 μM	1.97 µM	98.5	3.54
		2.5 μΜ	2.54 μM	101.6	1.73

 Table S2: Literature comparison with present work.

S. No.	S. No. Type of Method		Medium	LOD	References
	Detection	Degradation			
1.	Fluorescence based	×	Binding buffer (pH – 8.5)	17.2 nM	Food Control 60 (2016) 296-301.
2.	Colorimetric method	×	Buffer solution	5.0 nM	Journal of Hazardous Materials 388 (2020) 1217583
3.	Colorimetric ELISA	×	Bicarbonate buffer pH (8.6) & PBS buffer (7.4)	40 pg/mL	Sensors and Actuators B 262 (2018) 102–109
4.	Fluorescence based ratiometric detection	Catalytic degradation by peptidic- benzimidazole dipodal receptor	Aqueous medium	2.1 × 10 ⁻⁷ M	Present work
5.	HPLC	By hydrolytic action of Alcaligenes faecalis	LB medium	NA	Journal of Applied Microbiology 123, 661 – 668
6.	LCMS	By lactic acid bacteria	MRS medium	NA	Food and Chemical Toxicology 112 (2018) 60 - 66
7.	HPLC	commercial peroxidase (POD) enzyme (Armoracia rusticana)	Potassium phosphate buffer, water, H ₂ O ₂	NA	Food research international 131 (2020) 109039