Platinum Glutamate Acid Complex as a Peroxidase Mimic: High Activity, Controllable Chemical Modification, and Application in Biosensor

Yuanyuan Zhang, Lexian Wu, Jing Yang, Guoming Li, Keqin Deng, Haowen Huang*

Determination of the Michaelis-Menten constant

Ethanol was employed as a solvent to prepare a 5mM solution of TMB, while water served as the solvent for the precise formulation of a 1mM solution of Glu-Pt. A comprehensive range of H_2O_2 concentrations (5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5, 0.2mM) was prepared. Each well of a microplate received 80μ L of Glu-Pt and 80μ L of TMB, separately. Subsequently, 40μ L of H_2O_2 at varying concentrations was meticulously added to each well. The final concentrations in the microplate were 2mM for TMB, 0.4mM for Glu-Pt, and diverse concentrations of H_2O_2 (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.04mM). Each concentration set underwent a meticulous triplicate parallel experimentation. The microplate underwent uniform shaking, initiating an 8-minute reaction period. Following this, the absorbance at 652 nm was precisely measured using a microplate reader. C/V curves and double reciprocal curves were adeptly generated to gain comprehensive insights into the reaction dynamics. The determination of the Michaelis-Menten constant (K_m) was carried out to provide a quantitative measure of the enzymatic activity.

Glutamic acid

¹H NMR (400 MHz D₂O): δ 3.74 (t, *J* = 6.4 Hz, 1H), 2.55–2.42 (m, 2H), 2.15–2.01 (m, 2H).

Platinum glutamic acid complex:

¹H NMR (400 MHz D₂O): δ 4.07 (t, J = 6.7 Hz, 2H), 2.61–2.57 (m, 4H), 2.24–2.12 (m, 4H).

Fig. S1. 1H 400 MHz NMR spectra of glutamic acid (top) and platinum glutamic acid complex (bottom).

Fig. S2. The comparison of peroxidase-like activity of platinum complexes formed with amino acids.

Fig. S3. The structure of $Pt(Glu)_2$ (right) and a schematic representation of its coordination with H_2O_2 (left).

Fig. S4. The absorption spectra obtained from the H_2O_2 and TMB in the presence of $Pt(Glu)_2$, $Pt(Glu)_2+GSH$, and $Pt(Glu)_2+$ cysteine.

Fig. S5. Bioimaging HCCLM3 incubated with the mixture of GOx and $Pt(Glu)_2$ (a) and GOx chemically modified with $Pt(Glu)_2$ (b).

Fig. S6. Color change upon the addition of cholesterol in the $ChOx-Pt(Glu)_2/TMB$ (a) and ChOx/TMB (b).

Analytical method	Linear range	LOD	Reference
	(µM)	(µM)	
Electrochemistry	50-6000	8.4	1
Differential Pulse	5-1000	0.715	2
Voltammetry			
Fluorometry	0-800	56	3
Fluorometry	0.520	0.4	4
	0-320	0.4	4
Colorimetry	10-100	2.9	5
2-30	0.8	0	
Colorimetry	10-100	3.5	7
Colorimetry	0.1-80	0.56	This work
	Analytical method Electrochemistry Differential Pulse Voltammetry Fluorometry Fluorometry Colorimetry Colorimetry Colorimetry Colorimetry	Analytical methodLinear range (μM) Electrochemistry50-6000Differential Pulse5-1000Voltammetry0-800Fluorometry0-520Colorimetry10-100Colorimetry2-50Colorimetry10-100Colorimetry0.1-80	$\begin{array}{c c} \mbox{Analytical method} & \mbox{Linear range} & \mbox{LOD} \\ (\mu M) & (\mu M) \\ \hline \mbox{Electrochemistry} & 50-6000 & 8.4 \\ \mbox{Differential Pulse} & \\ \mbox{Voltammetry} & 5-1000 & 0.715 \\ \mbox{Voltammetry} & 0-800 & 56 \\ \mbox{Fluorometry} & 0-800 & 56 \\ \mbox{Fluorometry} & 0-520 & 0.4 \\ \mbox{Colorimetry} & 10-100 & 2.9 \\ \mbox{Colorimetry} & 2-50 & 0.8 \\ \mbox{Colorimetry} & 10-100 & 3.5 \\ \mbox{Colorimetry} & 0.1-80 & 0.56 \\ \end{array}$

 Table S1. Comparison of nanozyme-based detection methods for cholesterol detection.

Table S2. Comparison of other detection methods for ALP detection

Sensing system	Analytical method	Linear range(U/L)	LOD (U/L)	Reference
CdSe nanoparticles	Electrochemistry	2-25	2	8
Lumin-SiNPs	Electrochemistry	5-50	0.8	9
Dopamine-resorcinol	Fluorometry	0.1-6.0	0.07	10
O-phenylenediamine - Ascorbic acid 2- phosphate	Fluorometry	0.1-30	0.06	11
N-CDs	Fluorometry	2.5-45	0.4	12
Cu Alkyne–azide cycloaddition and DNA-	Fluorometry	100-1600	50	13
templated CuNPs				
Ce ⁴⁺ -TMB	Colorimetry	50-250	2.3	14
Fe ₅₅ -N-C	Colorimetry	0.05-20	0.03	15
Fe(II)-phenanthroline	Colorimetry	0-220	0.94	16
AuNPs-cystine	Colorimetry	0.2-20	0.2	17
				6

Cu- MOF/ Pyrophosphate	Colorimetry	1-34	0.19	18
Polydiacetylenes liposomes	Colorimetry	10-200	2.8	19
Cu-C ₃ N ₄ -550	Colorimetry	0.4-20	0.32	20
FeCo NPs	Colorimetry	0.6-10	0.49	21
Fe–N–C single-atom nanozymes	Colorimetry	0.1-1.5	0.05	22
Pt(Glu) ₂	Colorimetry	0.5-12	0.09	This work

References

- Wang, S.J.; Chen, S.Y.; Shang, K.H.; Gao, X.Y.; Wang, X. Int. J. Biol. Macromol. 2021, 189, 356-62.
- (2) Li, Z.J.; Xie, C.C.; Wang, J.H.; Meng, A.L.; Zhang, F.H. Sens. Actuators B Chem. 2015, 208, 505-511.
- (3) Bui, T.T.; Park, S.Y. Green Chem. 2016, 18, 4245-4253.
- (4) Sun, L.; Li, S.S.; Ding, W.; Yao, Y.W.; Yang, X.Y.; Yao, C. J. Mater. Chem. B 2017,5, 9006-9014.
- (5) Zhang, Y.; Wang, Y.N.; Sun, X.T.; Chen, L.; Xu, Z.R. Sens. Actuator B Chem. 2017, 246, 118-126.
- (6) Wu, Y.Z.; Ma, Y.J.; Xu, G.H.; Wei, F.D.; Ma, Y.S.; Song, Q.; Wang, X.; Tang, T.; Song, Y.Y.; Shi, M.L.; Xu, X.M.; Hu, Q. Sens. Actuators B Chem. 2017, 249,195-202.
- (7) Hong, C.Y.; Zhang, X.X.; Wu, C.Y.; Chen, Q.; Yang, H.F.; Yang, D.; Huang, Z.Y.; Cai, R.; Tan, W.H. ACS Appl. Mater. Interfaces **2020**, 12, 54426-54432.
- (8) Jiang, H.; Wang, X. Anal. Chem. 2012, 84, 6986-6993.
- (9) Qi, W. J.; Fu, Y. L.; Zhao, M. Y.; He, H. K.; Tian, X.; Hu, L. Z.; Zhang, Y. Anal. Chim. Acta 2020, 1097, 71-77.
- (10)Ni, P.J.; Chen, C.X.; Jiang, Y.Y.; Zhang, C.H.; Wang, B.; Lu, Y.Z.; Wang, H. Sens. Actuators B Chem. 2020, 302, 127145.
- (11) Zhao, D.; Li, J.; Peng, C.Y.; Zhu, S.Y.; Sun, J.; Yang, X.R. Anal. Chem. **2019**, 91, 4, 2978-2984.
- (12) Hu, Y. L.; Geng, X.; Zhang, L.; Huang, Z. M.; Ge, J.; Li, Z. H. Sci. Rep. 2017, 7, 5849.
- (13) Yang, D. W.; Guo, Z. Z.; Tang, Y. G.; Miao, P. ACS Appl. Nano Mater. 2018, 1(1), 168-174.
- (14)Song, H.W.; Wang, H.Y.; Li, X.; Peng, Y.X.; Pan, J.M.; Niu, X.H. Anal. Chim. Acta 2018, 1044, 154-161.

- (15) Liu, W.D.; Chu, L.; Zhang, C.H.; Ni, P.J.; Jiang, Y.Y.; Wang, B.; Lu, Y.Z.; Chen, C.X. Chem. Eng. J. 2021, 415, 128876.
- (16) Hu, Q.; Zhou, B.; Dang, P.; Li, L.; Kong, J.; Zhang, X. Anal. Chim. Acta 2017, 950, 170-177.
- (17) Xianyu, Y. L.; Wang, Z.; Jiang, X. Y. ACS Nano 2014, 8, 12741-12747.
- (18) Wang, C.H.; Gao, J.; Cao, Y.L.; Tan, H.L. Anal. Chim. Acta 2018, 1004, 74-81.
- (19) Wang, D. E.; You, S. Q.; Huo, W. J.; Han, X.; Xu, H. Y. *Microchim. Acta* (2022) *189*:70.
- (20) Song, Y.F.; Huang, C.Z.; Li, Y.F.ACS Appl. Nano Mater. 2023, 6, 1369-1378.
- (21) Wu, T.T.; Ma, Z.Y.; Li, P.P.; Liu, M.L.; Liu, X.Y.; Li, H.T.; Zhang, Y.Y.; Yao, S.Z. *Talanta* **2019**, 202, 354-361.
- (22) Xie, X. L.; Wan, Y.F.; Zhou, X.B.; Che, J.Y.; Wang, M. K.; Su, X. G. Analyst 2021,146, 896-903.