Electronic Supporting Material

Programmable DNA barcode-encoded exponential amplification

reaction for the multiplex detection of miRNAs

Yuqian Tan^{a,1}, Li Zhang^{a,1}, Shixiong Deng^{a,*}

^a Department of forensic medicine, Chongqing Medical University, Chongqing 400016, China.

¹ These authors contributed equally to this work

* Corresponding author

Email address: dengshixiong@cqmu.edu.cn (Shixiong Deng)

Figure S1 The melting curve of the one or two mutations to the original encoding sequence.

Figure S2 Sensitivity and specificity of the E-EXPAR. (a) and (c), Melting curve of miRNA detection system at various concentrations of miRNA-9 or miRNA-122 from 10 fM to 500 pM. (b) and (d) The linear relationship between the logarithmic rate of fluorescence change and the concentration of miRNA-9 or miRNA-122.

Oligonucle	Sequence (from 5' to 3')
otides	
Q1	GTGGAGTAGTTGGATGAAGTAGGG
Q2	GTGGAGTAGTTGGATGTAGTAGGG
Q3	GTGGAGTAGTTAGATGAAGTAGGG
Q4	GTAGAGTAGTTGGATGAAGTAGGG
Q5	GTGGAGTAGACGGATGAAGTAGGG
Q6	GTGAAGTAGTTGGATAAAGTAGGG
Q7	GTGGAGTCCTTGGATGAAGTAGGG
Q8	GTGAAGTAGTTGGATCAAGTAGGG
Q9	GTGAAGTACTTGGATAAAGTAGGG
Q10	GTGGAAATGTTGGATGAAGTAGGG
Q11	GTGAAGTAGTTGGATCCAGTAGGG
Q12	GTGAAGTAGGTGGATCAAGTAGGG
Q13	GTGATGTAGTTGGATCAAGTAGGG
Q14	GTGAGGTAGTTGGATCAAGTAGGG
Q15	GTGAAGGAGTTGCATGAAGTAGGG
Q16	GTGAAGTAGTTGCTTGAAGTAGGG
Q17	GTGAAGTAGTTCGATAAAGTAGGG
Q18	GTGAAGTAATTGGATAAAGTAGGG
Q19	GTGAAGTAGATGGATAAAGTAGGG
Q20	GTGAACTAGTTGGATAAAGTAGGG
Q21	GTGAAGTAGTTGAATAAAGTAGGG
Q22	GTCGAGTAGTTGAATAAAGTAGGG
Probe	HEX-CCCTACTTCATCCAACTACTCCAC-p'
MI-21	UAGCUUAUCAGACUGAUGUUGA
template21	CCCTACTTCATCTGGAGACTCAACATCAGTCTGATAAGCTAGGAGACTCAACAT
	CAGTCTGATAAGCTA-p'
mi-9	UCUUUGGUUAUCUAGCUGUAUGA
template9	CCCTACTTCATCCAAGGACTCCACTCATACAGCTAGATAACCAAAGAGGAGACT
	CATACAGCTAGATAACCAAAGA-p'
mi122	UGGAGUGUGACAAUGGUGUUUG
Template122	CCCTACTTTATCCAAGTACTTCACGGAGACCAAACACCATTGTCACACTCCATT
	GGAGACCAAACACCATTGTCACACTCCA-p'
mi9:forward	CGCGTCTTTGGTTATCTAGCTGTATGA
primer	
mi21:forward	CGCGCTAGCTTATCAGACTGATGTTGA
primer	
mi122:forwar	CGTGGAGTGTGACAATGGTGTTTG
d primer	
MI141	UAACACUGUCUGGUAAAGAUGG
MI155	UUAAUGCUAAUCGUGAUAGGGGU
MI199a	ACAGUAGUCUGCACAUUGGUUA

Table S1 Sequences of the designed oligonucleotides

M1AAGCTTATCAGACTGATGTTGAM2CCGCTTATCAGACTGATGTTGA

Amplification method	Detection limit	Multiple detect	Time	Reference
Exponential amplification reaction-triggered three dimensional bipedal DNA walkers	10 fM	/	70 min	[1]
amplification	1 aM	/	110 min	[2]
nicking-assisted exponential amplification	100 aM	/	60 min	[3]
DNAzyme-assisted Rolling circle amplification	10 fM	/	5 h	[4]
Rolling Circular Amplification (RCA)- Assisted CRISPR/Cas9 Cleavage (RACE)	90 fM	Yes	2 h 35 min	[5]
Catalytic hairpin assembly gel assay	10 fM	Yes	3 h	[6]
alkaline phosphatase-assisted isothermal reaction	180 aM	Yes	8 h	[7]
E-EXPAR	1.3 fM	Yes	70 min	This work

Table S2 Comparison of the reported fluorescence platforms for miRNAs detection

References

[1] L. Yang, J. Fang, J. Li, X. Ou, L. Zhang, Y. Wang, Z. Weng, G. Xie, An integrated fluorescence biosensor for microRNA detection based on exponential amplification reaction-triggered threedimensional bipedal DNA walkers, Anal. Chim. Acta. 1143 (2021) 157–165.

[2] J. Jiang, B. Zhang, C. Zhang, Y. Guan, A Novel Design Combining Isothermal Exponential Amplification and Gold-Nanoparticles Visualization for Rapid Detection of miRNAs, Int. J. Mol. Sci. 19 (2018) 3374.

[3] C. Yuan, J. Fang, X. Luo, Y. Zhang, G. Huang, X. Zeng, K. Xia, M. Li, X. Chen, X. Yang, M.L. de la Chapelle, W. Fu, One-step isothermal amplification strategy for microRNA specific and ultrasensitive detection based on nicking-assisted entropy-driven DNA circuit triggered exponential amplification reaction, Anal. Chim. Acta. 1203 (2022) 339706.

[4] X. Liu, M. Zou, D. Li, R. Yuan, Y. Xiang, Hairpin/DNA ring ternary probes for highly sensitive detection and selective discrimination of microRNA among family members, Anal. Chim. Acta. 1076 (2019) 138–143.

[5] R. Wang, X. Zhao, X. Chen, X. Qiu, G. Qing, H. Zhang, L. Zhang, X. Hu, Z. He, D. Zhong, Y. Wang, Y. Luo, Rolling Circular Amplification (RCA)-Assisted CRISPR/Cas9 Cleavage (RACE) for Highly Specific Detection of Multiple Extracellular Vesicle MicroRNAs, Anal. Chem. 92 (2020) 2176–2185.

[6] W. Dai, J. Zhang, X. Meng, J. He, K. Zhang, Y. Cao, D. Wang, H. Dong, X. Zhang, Catalytic hairpin assembly gel assay for multiple and sensitive microRNA detection, Theranostics. 8 (2018) 2646–2656.

[7] M. Wang, H. Yin, Y. Zhou, J. Han, T. He, L. Cui, S. Ai, Photoelectrochemical biosensor for microRNA detection based on multiple amplification strategies, Mikrochim. Acta. 185 (2018) 257.