Supporting Information

An efficient electrochemical sensor based on Ce-MOF/g-C₃N₅

composite for detection of nitrofurazone

Jianxia Gu*a, Yiqiong Jiaa, Zhanbin Jina, Tingting Weia, Yongxia Lia

^aDepartment of chemistry, Xinzhou Normal University, Xinzhou, Shanxi, China

Figures

Fig. S1. XPS spectrum of Ce-MOF/g- C_3N_5 .

Fig. S2. N₂ adsorption-desorption isotherms (a) and corresponding pore size distribution curves (b) of Ce-MOF, g-C₃N₅ and Ce-MOF/g-C₃N₅.

Fig. S3. EIS of Ce-MOF, $g-C_3N_5$ and Ce-MOF/ $g-C_3N_5$ recorded in 5.0 mM Fe(CN) $_6^{3-}/^{4-}$ with 0.1 M KCl, thefrequency range from 0.1 Hz to 10.0 kHz (Inset: the Randles circuit).

Fig. S4. The CV curves under different scan rates (10 mV/s to 100 mV/s) for Ce-MOF (a), g-C₃N₅ (b), Ce-MOF/g-C₃N₅ (c) in 0.1 M PBS containing 40 μ M nitrofurazone. (d) double-layer capacitance (C_{dl}) of Ce-MOF, g-C₃N₅, Ce-MOF/g-C₃N₅ at a given potential of -0.10 V vs.Ag/AgCl in in 0.1 M PBS containing 40 μ M nitrofurazone.

Fig. S5. The DPV responses for detection of nitrofurazone in 0.1 M PBS (pH=6.0) containing 50 μ M nitrofurazone on different batches of Ce-MOF/g-C₃N₅ composite.

Table S1. The specific surface area and average pore diameter of Ce-MOF, g-C_3N_5 and Ce-MOF/g-C_3N_5

Samples	Specific surface area (m ² /g)	Average pore diameter (nm)
Ce-MOF	13.43	17.2
g-C ₃ N ₅	8.70	23.2
Ce-MOF/g-C ₃ N ₅	17.14	22.1

Table S2. Interferences of some inorganic and organic species on the peak currents of nitrofurazone (40 μM)

Interferential species	Concentration (μM)	Peak current change (%)
Ascorbic acid (AA)	40	2.0
Dopamine (DA)	40	2.3
Glucose	40	4.8
Urea (UA)	40	3.4
Metronidazole	40	1.8
Ca ²⁺	1 mM	-0.6
Mg^{2+}	1 mM	-0.4
Fe ³⁺	1 mM	0.2
Na ⁺	40 mM	1.9
K^+	40 mM	1.4