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1 Laser diode driver

Due to their exponential current-voltage characteristics, laser diodes require precise current control,
which can be achieved using an LM317 voltage regulator configured as a current source, providing a
straightforward and cost-effective solution. Although there may be more efficient current source alterna-
tives, the simplicity and ease of implementation of the LM317-based circuit outweigh these considerations
in the context of this study, making it a suitable choice for driving the laser diode.
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Figure 1 Schematic of the laser driver based on a LM317 regulator
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The schematic of the laser driver is shown in figure [ By design, the output current of LM317 is
fixed at 1.25/R. Rpaq set a maximum output current when the potentiometer is set at R, = 0Q.



2 OPTIMIZATION OF FIBER INSERTION

2 Optimization of fiber insertion

In the experimental phase involving the integration of optical fibers—either lens or laser fibers—into
the microfluidic chip, precision and specific techniques are essential for successful implementation. The
laser fiber’s tip must be accurately positioned within the microchip’s dry channel. This can be optimally
achieved by utilizing a binocular microscope and stabilizing the laser fiber on a substrate that is level
with the microchip’s own substrate, followed by a controlled forward motion. For applications requiring
a collimated light sheet, the laser fiber tip should be situated approximately at the back focal distance
(BFD). However, in the case of focused light sheets, a higher degree of precision is mandated. The
final micrometric adjustments are particularly challenging due to the friction encountered with the
polydimethylsiloxane (PDMS) material. To mitigate the risk of fiber breakage within the microchip—a
scenario that renders the device inoperable—it is advisable to minimize the length of the uncoated fiber
segment to enhance its mechanical resilience.



3 EFFECT OF THE STEP-INDEX AND GRADIENT-INDEX OPTICAL FIBER ON THE FOCALIZATION OF A GAUSSIAN
BEAM
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Figure 2 Numerical simulation obtained with diffractio[I] in the case of the focalization of a Gaussian beam by a step-index optical fiber
modelized by two concentric spheres : the first one with radius 105/2 and refractive index ngor = 1.469 and the second one with a radius
of 125/2 and a refractive index ngore = 1.464.

3 Effect of the step-index and gradient-index optical fiber on the focalization
of a Gaussian beam

Fig. |2| presents the focalization profile of a Gaussian beam by a step-index optical fiber modelized by
two concentric spheres the first one with radius 105/2 microns and refractive index ngyp = 1.46958 and
the second one with a radius of 125/2 microns and a refractive index ngy = 1.46382. No visible effects
are apparent at the boundary of the cladding and the core of the optical fiber and no difference was
seen in the case with just one sphere with a constant refractive index.



4 RAY TRANSFER MATRIX OF A BALL LENS

4 Ray transfer matrix of a ball lens

The ray transfer matrix of a thick lens can be seen as the succession of a concave spherical interface
with a radius of curvature R; separating a medium of refractive index n; and the lens of refractive index
ny followed by a length d of free propagation and finally a convex spherical surface with a radius of
curvature Ry separating the lens from a medium of refractive index n3. Thus, it can be written as [2] :

1 0 | d 1 0
Mthick lens — L 1 — @ Q (0 1) _i 1— ﬂ ﬂ (1)
R, n3 nj3 Ry ny np

A ball lens is a special case where the two radii of curvature are the same (R; = R, = R) and the
distance d between the two spherical interfaces is equal to the diameter D = 2R of the sphere. Conse-
quently,

1+ 2n_] 2Rn—]
ny nj
Mpall tens = niny —2n1n3 +non3 2 1 @
_ n -
nyn3Rk : np n3

The image focal distance fimage can be obtained by calculating where a ray parallel to the optical
axis crosses the optical axis after going through the lens. The incoming ray has for vector :

Vin = (; - })) 3)

where x is the distance from the optical axis and 0 is the angle with the optical axis. The light ray
exiting the ball lens has for vector :

ni
B Sl
Xout nj
Vout = Mball lens * Vin = = _ 4)
ou all lens " Vin (eout> _mny 2n1n3 + npns
non3R

and crosses the optical axis at distance xout/6oys from the right side of the ball lens (where we assume
that tan O,y ~ Oyt as usual for paraxial rays). Subtracting R in order to obtain the distance from the
center of the ball lens, we obtain]] :

—nimR
ni(ny —2n3) +nan3

(5)

fimage =

When the ball lens is immersed in air, n; =np, = 1 and the image focal distance drops back to
fimage = —nD/(4(n—1)) as in the standard textbook [2].

As for the object focal distance, it can be found by firstly calculating an input light ray that would
give an output ray parallel to the optical axis (with Oy = 0) and then calculating the position where
the input ray crosses the optical axis.

(2 B 1 )
Vin = (Mball lens)_l *Vout = (xm) = n nj 6)

6, niny — 2nin3 + nong

nlan

1Equivalently, we can directly use the formula fimage = A/C where A and C are the ABCD coefficient matrix of the ball lens (cf eq



4 RAY TRANSFER MATRIX OF A BALL LENS

and crosses the optical axis at distance xi,/6i,. Adding R to this distance give the object focal

distance fobjectﬂ : R
non3
(7)
ny (nz — 2”3) +nonj

fobject =

Once again, this distance reverts to nD/(4(n— 1)) in the case where nj =n; =1 .
If the first part of the ball lens is in the air (n; = 1) and the second part is surrounded by PDMS
(n3 = np) and if we note the index of refraction of the lens n, = n, we obtain :

—nR nnpR
I (8)

i = and ot =
flmage fobJect n_ 2nP T nnp

n—2np + nnp

In the same conditions, the ABCD matrix is given by :

2 2R
—1 + - N
Mball lens — n— 2nP —?I’ll’lp 2 n 1 (9)
nnpR n np

2Equivalently, we can directly use the formula fobject = —D/C where D and C are the ABCD coefficient matrix of the ball lens (cf eq



5 PROPAGATION OF A GAUSSIAN BEAM THROUGH THE OPTICAL SYSTEM

5 Propagation of a Gaussian beam through the optical system
The optical system is schematized in figure
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Figure 3 Optic schematics for the calculation of the Gaussian beam through the different media. The diameter of the ball lens is fixed at
125 pwm.

The beam exiting the single mode fiber can be approximated by a Gaussian beam with a waist w
equal to half the diameter of the mode field (here 3.3 um, hence wy = 1.75um and an infinite radius of
curvature R(z). This beam can be represented by a complex number g with 1/q= —iA /(zaw(z)?)+1/R(z)
where A is the wavelength of the light (here A =405nm, z is the optical axis coordinate, w(z) is the
waist of the Gaussian beam at position z and R(z) its radius of curvature and n is the refractive index
of the medium of propagation [3]).

The waist at the propagation position z can be obtained through the complex parameter g(z) by :

_ A 2

where 3(g) is the imaginary part of ¢

At the exit of the optical fiber, where the radius of curvature R(z) is infinite, the complex parameter
of the Gaussian beam g is purely imaginary and equals :

2
w
dfiber = iTO =iz, (1D



5 PROPAGATION OF A GAUSSIAN BEAM THROUGH THE OPTICAL SYSTEM

where z, = 7w}/A is the Rayleigh range.

Using ABCD ray transfer matrix, one can calculate the evolution of the complex parameter g of the
beam through the propagation of the different opticsﬂ

More precisely, the input complex parameter g is transformed in ¢ after propagating through an
optic represented by a ABCD matrix Viaﬁ 3] :

,  Aq+B

N Cqg+D (13

q

Propagation from the fiber over the distance s; to the ball lens in the air leads to the complex
parameter g :

q1 = qfiber +51 =iz, + 51 (14)
The ball lens transform ¢; in g, via
Aql +B
=21 15
= Cq+D (15

with the ABCD coefficient obtained from equation [0} Thus, we can write :

_ BD+ (BC+AD+ACs)s| +ACz2 ; —7-(BC+AD)

16
(Csy +D)2 —I—C2Z% (Csy +D>2 ‘|‘CZZ% (16)

q2

Propagation in PDMS from the lens to the fluid distanced by s;, microchannel transforms g, in ¢3
with:
B=q2+5 (17)

The refraction between the PDMS and the water at the microchannel interface transforms g3 in g4 ViaEI

n
q4 = —WCB (18)
np

where n,, = 1.33 is the refractive index of water.

Finally, the beam propagates in the water (distance s3 where it may focalize. It transforms from gy
to g5 with :
g5 = g4+ 53 (19)

Alternatively, one can also form a single matrix for the overall optical system :
1 0
o 1 S1 A B 1 52 n 1 53
MSYS‘(O 1)(C D) (o 1)(0 n—P) (o 1) (20)
w

30nly the coefficient A and B will affect the waist of the propagating Gaussian beam through the optical system described by an ABCD matrix. More
precisely, the input waist w is transformed into the exit waist w’ via :

2 2
e (22) 4 (a0 ) a2

We can see that if B=0 and A = 1 then the waist will be unchanged by the optics

4if one wants to trace the beam through the ball lens, like in section[4] then the full ABCD matrix of the ball lens (eq2) has to be broken into its three
parts like in equation

5The ABCD matrix of refraction at a flat surface from refractive index n; to ny is :

1 0
0o M
ny




5 PROPAGATION OF A GAUSSIAN BEAM THROUGH THE OPTICAL SYSTEM

The focal spot position zy is reached when the radius of the beam curvature is infinite and when the
complex parameter ¢ is purely imaginary. This happens when the distance s3 is equal to :

(21

nw <BD+(BC+AD+ACSI)S1+ACz% ; )
2

np (Csi + D)2 +C222

In practice, it is maybe easier to use a numerical approach than using a literal formula like eq21]



6 RAY TRACING OF A GAUSSIAN BEAM IN THE PARAXIAL APPROXIMATION
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Figure 4 Gaussian beam propagation obtained with paraxial Ray transfer matrix calculation in the case of a collimating beam (s; = 130um)

6 Ray tracing of a Gaussian beam in the paraxial approximation

Based on the mathematical development presented in the previous SI sections Python scripts were writ-
ten to calculate the propagation of a Gaussian across the optical system using Ray transfer matrix. These
scripts can be found at https://github.com/MLoum/On-chip-light-sheet-illumination-for-nanoparticle

Figures [4] 5] and [6] presents obtained with the mentioned Python script for different optics configura-
tion, namely collimated (fig. , slightly converging (fig. [5) and strongly converging (fig. @ Figures
presents the case where there is no cylindrical lens.

10


https://github.com/MLoum/On-chip-light-sheet-illumination-for-nanoparticle-tracking-in-microfluidic-channels

6 RAY TRACING OF A GAUSSIAN BEAM IN THE PARAXIAL APPROXIMATION
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Figure 5 Gaussian beam propagation obtained with paraxial Ray transfer matrix calculation in the case of a slightly convergent beam
(s1 = 150um).
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6 RAY TRACING OF A GAUSSIAN BEAM IN THE PARAXIAL APPROXIMATION
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Figure 6 Gaussian beam propagation obtained with paraxial Ray transfer matrix calculation in the case of a strongly convergent beam
(s1 =240um).
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6 RAY TRACING OF A GAUSSIAN BEAM IN THE PARAXIAL APPROXIMATION
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Figure 7 Gaussian beam propagation obtained with paraxial Ray transfer matrix calculation when there is no lens but only diopters
(s1 =300um, s3 = 100um).
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7 EVOLUTION OF THE WAIST AND RAYLEIGH LENGTH WITH THE POSITION OF THE OPTICAL FIBER

7 Evolution of the waist and Rayleigh length with the position of the optical
fiber
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Figure 8 Evolution of the waist and Rayleigh length with the distance between the optical fiber and the boundary of the cylindrical lens
(and not its center) in the case where the cylindrical lens is in contact with PDMS. The plain line was obtained with ray transfer matrix
calculation whereas the point where obtained used numerical simulation with diffractio.
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7 EVOLUTION OF THE WAIST AND RAYLEIGH LENGTH WITH THE POSITION OF THE OPTICAL FIBER
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Figure 9 Evolution of the waist and Rayleigh length with the distance between the optical fiber and the boundary of the cylindrical lens
(and not its center) in the case where the cylindrical lens is not in contact with PDMS.
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8 GAUSSIAN BEAM PARAMETERS

8 Gaussian beam parameters

Gaussian beam profile I(r) = e=2r"/W*
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Figure 10 Radial profile of the intensity of a Gaussian at a given z position along the optical axis. The waist wq is the radius of the
distance from the center of the beam where the maximum intensity is divided by 2, that is to say 13%.

The intensity of a (Gaussian beam is derived from the square of the electric field distribution, and
it forms a Gaussian profile in the transverse plane perpendicular to the direction of propagation. This
distribution can be written as (see fig[L0):

2
I(r,z) =1y (%) e 2 W) (22)

In this equation, Iy is the peak intensity at the center of the beam waist, wy is the waist size, w(z) is
the radius at which the field amplitude and intensity are reduced to 1/e and 1/e? (that is to say 13%)
of their axial values, respectively, and r is the radial distance from the beam axis.

The waist w(z) of the beam evolves along the propagation axis z according to the formula (see fig

w(z) =woy/ 1+ (—)2 (23)

Here, zg is the Rayleigh range, defined as:

16



8 GAUSSIAN BEAM PARAMETERS

IR = —F" 24)

where A is the wavelength of the light. The waist wy and Rayleigh range zg are crucial parameters
that completely describe the beam and its evolution along the propagation axis. The waist size w(z)
reaches its minimum, wy, at z =0 and increases for |z| > 0, illustrating the beam’s divergence away from
the focus. At the Rayleigh length zg the beam waist is w(zg) = v2wy.

The Full Width at Half Maximum (FWHM) of the intensity profile at the beam waist is related to
the waist size by:

FWHM = 2v21n2wg &~ 1.1774wq (25)

Evolution of the Waist Profile w(z) of a Converging Gaussian Beam
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Figure 11 Schematic of the profile w(z) of a focalizing Gaussian beam that front cases the definition of the wy, that is to say the minimum
waist size at the focal point, and the Rayleigh length z, = mw3/A, that is to say, the distance from the focal point where the waist is

w(zr) = V2wo
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10 LIGHT-SHEET LATERAL PROFILE

9 Depth of field determination

The depth of the light sheet can change along the width of the channel. For the collimated option, it can
appear due to a miss positioning of the fiber around the focal point but it barely affects the thickness
as figure [12] shows for three different positions. However, for the focused light sheet, inherently to the
beam waist proprieties, the light sheet thickens depending on the distance to the center of the waist.
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Figure 12 Estimated light-sheet size with the Z-stack method for different positions between the lens and the fiber. On the right 145 um,
On the middle 110um and on the left 90 um.

For particle tracking, we established a different definition of the depth of field (DOF) taking into
account the maximal distance were a particle can be detected from the background noise. Because the
diffraction pattern of an out of focus bead is an airy disk, a simulation can estimate the intensity axial
profile of the beads when it goes away from the focal plane. Figure [13|shows the axial evolution of the
central pixels intensity in the diffraction pattern. To generate the theoretical pattern, the scalar-based
diffraction model of Gibson & Lanni is used with the plugin "PSF generator" of Fiji [4].

10 Light-sheet lateral profile

The article mainly deals with the axial profile of the light sheet which is the one that is focused by the
cylindrical lens and is the one increasing the signal-to-noise ratio for single particle tracking.

However, the cylindrical lens does not affect the lateral evolution of the light sheet. Consequently,
the beam exiting the optical fiber is diverging with a half angle related to the numerical aperture of the
optical fiber namely 0.12. Taking into account the refraction at the air/PDMS boundary and then the
PDMS/water boundary, the calculated lateral half angle divergence of the should be around 4.6°. This
is confirmed experimentally as shown in figure [I4] by creating the light sheet with a micro-channel filled
with a fluorophore (Atto 390) and imaging the corresponding fluorescence on the camera.

Hence, the lateral size of the light sheet where the tracking can be performed is dependent of the
distance between the optical fiber and the micro-channel. However, this distance also determines the
light sheet thickness and homogeneity. Consequently, a compromise has to be found. For instance, in
Fig. only a part of the field of view of the microscope is lightened with the light sheet. Placing the
microchannel further away from the optical fiber would have enlarged the zone of study, but at the same
time, it would have changed the light-sheet thickness and its axial homogeneity.
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10 LIGHT-SHEET LATERAL PROFILE

250
Refractive index immersion n; 1 17 X
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Figure 13 : Simulation of the PSF intensity profile along Z axis to approximate the axial volume length /; where a particle can be discerned
from background noise. Left panel shows the input parameters and the right curve is the Z axis intensity profile from the central part of
the PSF (4 pixels). The choice of resolution was made to fits with the experiment. The upper right corner shows the pattern of the PSF
and the value of each pixel describes the XY intensity profile. PSF generator, Daniel Sage and Hagai Kirshner, Biomedical Imaging Group
(BIG) EPFL, Lausanne, Switzerland.

Figure 14 Image of the fluorescence of Atto 390 excited with a light sheet. The estimated divergence (around 5°) is compatible with the
calculated one. The microdevice is the one described in Fig2.B, that is to say with a cylindrical lens but without an air notch.
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11 TRACKMATE DETECTION PROCEDURE

11 TrackMate detection procedure

The TrackMate detection procedure needs to be optimized to adapt the algorithm input. Knowing
that the size of the particles influences their velocity, the search radius from the particle position to
the next one is a crucial parameter. The whole detection process is described in the SI of the work on
"Single-Particle Tracking with Scanning Non-Linear Microscopy"[5].

TrackMate procedure

1 2

Image sequence Detection

Applying on

LoG detector the sequence

/ Threshold & blob size

Search for .
. . Search radius
trajectorles
Building of trajectories °
[
. o0
Q
@
S ) Frame 1 Frame 2 Frame 3 Frame n+1
Search radius for the next expected position
()
Selection of reliable Tracks > N positions
tracks
label ~ ID TRACK_ID QUALITY POS_X POS_Y
102681 2681 15 1.094 13.946 44.921
ID2685 2685 15 1.163 14.718 44.099
G ti f a text 102689 2689 15 1.164 13.555 44.676
eneration ot a tex ID2693 2693 15 1.402 13.113 44.631
file of raw coordinates 102697 2697 15 1.099 12.881 44.377
2701 2701 15 1.387 11.533 44.871
102705 2785 15 1.493  11.274 44.987 7
6 ID2708 2768 15 1.660 10.751 45.073
02711 2711 15 1.294 11.801 45.109
e —— 02718 2718 15 1.279 11.500 46.546
el it 02715 2715 15 1.428 12.295 47.091
= 02722 2722 15 1.176  13.005 47.135
102738 2738 15 1.290 13.858 46.068
102726 2726 15 1.116 14.660 46.003
| oo ]

Figure 15 Flowchart of trackmate procedure used in this work.
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12 ANALYZE OF THE TRACK

12 Analyze of the track
12.1 Diffusion equation

It is possible to find the equation for diffusion simply using the mass conservation equation and Fick’s
first law.

Mass conservation mathematically translates the idea that if the amount of matter n has varied in a
control volume V (which is written as [[f;, dn/dt), it’s because matter has entered or left through the
boundaries, that is to say, the surface S of V. This can be written as @st, where j = nv is the flux
vector associated with the particle flow and § = Sng, where ng is a vector at every point perpendicular
to the surface S and directed towards the outside. The mathematical transcription of mass conservation

is then written as: 3
n
T i-S (26)
//V ot #@J

One can then make the volume V tend towards zero, and the flux across the surface becomes, almost
by definition, equal to the divergence of the flux vector j (this is also known as the Green-Ostrogradsky
theorem).

In the end, we get:

an

5, Tdivi=0 (27)

where n is the particle concentration and j = nv is the particle current density vector.

Fick’s first law is described by:
j=-DV(n) (28)

where D is the translational diffusion coefficient in ms=2. This lawﬁ mathematically translates that
there exists a particle flux that tends to equalize concentrations within a sample. More precisely, a
concentration inhomogeneity, which is mathematically translated by the concentration gradient, leads
to the appearance of a particle flux (j) in the direction where the concentration is the lowest (cf the
minus sign).

Injecting Fick’s law (equation into the matter conservation equation lead to the diffusion
equation:

on

12.2 The jump probability

The jump probability is the probability for a particle to be at position ' after a given time knowing
that it was at position r at t = 0. It directly derives from the diffusion equation.

Formulation The diffusion equation [29| can be rewritten in terms of the probability P(x,) of finding the
particle at the abscissa x at time ¢. This probability also verifies the diffusion equation, which can be
written in the 1D case as:

IP(x,1) J°P
o oz G0

6When it was stated in 1865 by Adolf Fick, it was an empirical law. It was later justified at the microscopic scale via statistical physics.
7The gradient of the divergence is equal to the Laplacian graddiv <> A
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12.2 The jump probability 12 ANALYZE OF THE TRACK

with the initial condition:
P(x,t =0) = u(x)

where u(x) is any profile. In the case of a single particle found at x =0, u(x) = 8(x) where J(x) is the
Dirac distribution.

It is possible to solve the diffusion equation to know the jump probability using Fourier Transforms
of the equationﬂ This leads, in the case of a point-like particle to the jump probability :

1 ex (—(AX)Z)
VADTAL ATy

where we have replaced x with the notation Ax and ¢ with the notation Ar to indicate that these are
differences between two values.

Pjump(Ax7 At) = ) (38)

Properties of the jump probability

* The jump probability is a Gaussian with zero mean. Thus, the most probable position of a particle
after a given tim¢’|is its starting position. On the other hand, the probability of the particle moving
to the left (x < 0) is equal to that of moving to the right (x > 0).

¢ The second moment of the jump probability is its variance Var = 6% where o is the standard
deviation. We can directly identify it in the Gaussian of the jump probability and obtain:

0% = 2DAt (39)

It is then possible to relate the variance 62 to the mean of the squared displacements < (Ax)? >
which we will subsequently denote as MSD (for Mean Squared Displacement). Indeed, via the

8
To solve equationwe will apply a spatial Fourier transform, (The Fourier transform is indicated by the sign .”.), to both sides of the equation:

—

P(x, —
¥ :Dfracﬁz‘][(x,t)&c2 (31)
The derivative property of a Fourier transform allows us to specify the spatial part of the equation (The variable k will indicate the spatial frequency) :
8P(x,1) 225
52 = 4P (32)

Since we apply a spatial Fourier transform, it will not affect the time derivative:

OP(x,t S A
ét ) = EP(x,t) (33)
The previous transformations, therefore, allow us to write:
gﬁ(m) = 4Dk P(x,1) (34
Which is a first-order linear differential equation whose solution is direct:
P(x,t) = P(x,1 = 0) - e~ 407K (35)

To obtain the jump probability of a particle, we need to apply the inverse Fourier transform (% ~!), which will then transform the multiplication into
a convolution product:
P(x,1) = P(x,r = 0) % Z~\[e-4P7K1] (36)

We have as initial condition P(x,r = 0) = §(x) since we have a unique particle that is therefore perfectly localized at time # = 0, the inverse Fourier
transform of a Gaussian is calculated simply since the inverse transform keeps the Gaussian form. We then obtain:

2

P(x,t) = 8(x) * <\/ﬁ ~exp[;—gt]> (37)

As previously said, a particle is considered as point-like, so it is the impulsive response of the diffusive system. In this sense, the jump probability
(eq[38) is the Green’s function of the system. The analytical jump probability for a one-dimensional particle is therefore simply expressed by a Gaussian.

9 Any time actually, as the probability is time-invariant.
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12.3 Accounting for Convective Motion 12 ANALYZE OF THE TRACK

Konig-Huygen theorem@
0% =< (Ax)® > —(< Ax>)? =< (Ax)* > (40)

since the probability has a zero mean < Ax >.

In the end, and this is a crucial point for what follows, we can relate the diffusion coefficient D of
a particle to its MSD:
< (Ax)? >=2DAr (41)

We define a typical Brownian motion length Ly,own Which corresponds to the average distanceETI
covered in a given direction by a particle during the time Ar such as:

Liyrown = V2DAt (42)

This characteristic distance plays a very important role when we want to examine the order of
magnitude of the importance of Brownian motion compared to other phenomena that may occur
experimentally.

Thus, unlike translational motion, the distance covered by a particle via Brownian motion is not
proportional to time (x # vt) but proportional to the square root of time.

* The jump probability, and the associated Brownian motion, has no memory. In more mathematical
terms, there is, theoretically, no correlation between the Brownian jump that occurs between 0 and
At and the one between Ar and 2At. By indexing the first Brownian jump by n and the next by
n+1 we then have mathematically[ 2}

< AxpAxyyp1 >=0 (43)

In other words, the covariance of two successive jumps is zero.
12.3 Accounting for Convective Motion

Even for small particles, Brownian motion remains relatively weak compared to potential residual con-
vection movements within the fluid.

This is especially true in our case in our studies within microfluidic chips made of silicone. Indeed, this
material is relatively flexible and its deformation is comparable to the role of a capacitor in an electrical
setup. Just as there is a relaxation time 7 = RC for the current i in an electrical circuit, the equivalent
exists in a microfluidic circuit. The flow, and the associated convection motion, definitively stop only
after a relaxation time. On the other hand, any difference in liquid level within the microfluidic setup
leads to a hydrostatic pressure that can give rise to a non-zero residual flow.

101et’s denote the average of a quantity x by < x >. The variance is by definition the moment of order 2 given by:
02 =< (x—<x>)?>
or in other words, the mean of the squared deviations from the mean. So:
o2 =< -2 <x>4(<x>)?>
Since the mean is distributive and with << x >>=< x >, we can write:
02 =<’ > -2<x><x>H<x>)?)
to finally obtain:

ot =<xt>—(<x>)?

1 This may seem paradoxical as this distance is not zero, as indicated earlier, the average displacement < Ax > is zero...
12The mean value of the product of two Gaussians centered at zero also has a mean value of zero.
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12.4 Accounting for Experimental Uncertainties 12 ANALYZE OF THE TRACK

In the presence of a global convective motion at speed v, the Brownian jump probability (eq. is
modified to become [6]:

Pjump7 drift (Ax, At) =

_ _ 2
(Ax—VAr) ) (44)

1
e
VA4DrAt P ( 4DAt
The presence of a drift leads to this new jump probability, which in turn modifies the characteristics of

the motion:

* The average value of the displacements < Ax > is no longer zero. It is now < Ax >= VA, i.e., the
displacement due to the drift at speed V during time At.

* The variance of the jump probability remains the same, namely 6 = 2DAt but the application of
the Huygens-Kronig theorem now must involve a non-zero average < Ax > so that:

0% = 2DAt =< (Ax)* > —(< Ax >)? =< (Ax)* > —(VAr)? (45)
and we therefore obtain for the MSD < (Ax)? >:
< (Ax)? >=2DAt + (VAr)? (46)

In the presence of drift, the MSD is no longer proportional to time At and has an additional
quadratic term due to the drift. Even if the speed V of this drift leads to a convection movement
that is weak compared to the amplitude of the Brownian motion (VAz < +/2DAt), its intervention
at power 2 in the expression of the MSD means that it will eventually dominate in the long term.

* Convection motion does not create a memory effect and two successive jumps still have no cor-
relation. Indeed, a generalization of the Huygens-Konig theorem allows to write the covariance
Cov(x,y) of two random variables x and y from the expression of their mean.

Cov(x,y) =< P(x)P(y) > — < P(x) >< P(y) > 47)

where P(x) and P(y) are respectively the probability law of x and y which are here the jump
probability of eq[44] Consequently, with a speed V for the drift, the covariance noted here

Cov(x,y) = (VAr) x (VA)) — (VAS)(VAL) =0 (48)

12.4 Accounting for Experimental Uncertainties

While theoretically, Brownian motion is memoryless, the consecutive displacements of a particle in an
experimental measurement are actually correlated. Mathematically:

< AxpAxy ) >=< (X —Xp—1)(Xp41 —xn) >F#0 (49)

The key point is that both displacements share the n-th frame of the film. If there is experimental
uncertainty at the n-th frame, this will artificially couple the n and n+1 displacements, making the
covariance < Ax,Ax, | > non-zero.

These uncertainties have two origins :

* The error termed as static error originates from the noise (background noise or even shot noise)
that is a natural part of any experiment involving particle tracking.

* Dynamic error is a result of the time needed for acquiring position measurements, often referred
to as shutter time.

Additionally, it is important to note that during the image acquisition period, the particle continues
to exhibit Brownian motion. Contrary to the motion blur typically observed in convective flow,
which manifests as a trailing streak, the particle’s movement in this context results in a diffusive
halo surrounding its position.
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12.5 Drift correction 12 ANALYZE OF THE TRACK

The community has acknowledged that static localization noise, which is the random deviation in
determining the position of a stationary particle, impacts the Mean Square Displacement (MSD) with
[l: ) )

< (Ax)” >=2DAt+20

In this context, o represents the static localization error, which is the standard deviation of the measured
positions for a particle that is not in motion (deposited on a coverslip for instance).

As for the dynamic error, the MSD is modified as :
< (Ax,)? >=2DAr—4DRAt , 0<R<1/4

where R is the "motion blur coefficient", describes the pattern of light exposure, or alternatively the
condition of the camera’s shutter, throughout the camera’s period of image capture [8]. In the most
common case, that is to say full-frame averaging, R = 1/6.

In total, in the case of R =1/6, we have :

2
2 2 “
< (Aw,)* >=2DAr + 20 — T DRA1

static S=—~—
dynamic

This gives rise to two observations :

* This is a substantial correction from the very frequently used unmodified MSD approach. Taking
into account the dynamic error decreases the coeflicient diffusion by 33%.

* As said in the introduction of this section, while a Brownian particle in free motion has displace-
ments that are not correlated, motion blur and static localization noise create correlations in the
displacements that are actually observed.

The localization errors, represented by o, lead to a negative correlation. This can be comprehended
by recognizing that both Ay_; =x; —x;_1 and Ay = x;11 —x; are influenced by the same noise value
at frame k, but with opposing signs.

Motion blur, on the other hand, gives rise to a positive correlation. This is a well-known effect that
is akin to a low-pass filter being applied to the inherent motion when averaging across frames.

The static localization error o can be obtained experimentally or calculated via the covariance of the
time series of the displacement Ax :

0 =R < (Ax,)* > +(2R—1) < Ax,Ax,q > (50)

In the present study, the amendments introduced by accounting for the localization error denoted
as o, were relatively minor, on the order of a few percents. However, it was observed that o exhibited
significant variations between individual tracks, solely attributable to statistical fluctuations. This is not
compatible with the experimental conditions, where the Signal-to-Noise Ratio (SNR) remained almost
constant across the measurement plane. Consequently, it would be more methodologically sound to
establish a fixed experimental value for o, if feasible.

12.5 Drift correction

A first correction can be made only with the data from one track. A pure Brownian motion should
have a zero mean displacement < Ax >= 0. If it not the case, it can be attributed to a residual drift.
A very simple correction for the drift is then to subtract all displacements in one track from the mean
value of these displacements. This approach is simple to implement but has two limitations. Firstly,
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12.6 Software implementation 12 ANALYZE OF THE TRACK

it assumes that the drift is constant during all the tracks and secondly, even with no drift at all, the
mean of displacements can be different from zero due to statistical fluctuations. More precisely, if a
track contains N points, the confidence interval on the estimation of the mean < Ax >egtimate from only
those N points is given by the standard error of the mean (SEM) :

s
VN
Here, s is the sample standard deviation of the displacement values, and N is the number of points in
the track.

< Ax > estimate =< Ax >true (51)

The following two techniques|[9] are capable of determining drift solely based on the trajectories of
the particles, provided that there are enough particles and that they are adequately sampled.

The first one, the centroid method, calculates the mean position of all particles at every moment in
time and considers this average position as representative of the drift. The speed of the centroid position
is taken as the drift. This method is prone to error and needs a large number of particles to have a
correct estimate of a reliable centroid.

The subsequent approach, the drift correction using velocity correlation, addresses these issues by
employing a straightforward observation. Given that we’re dealing with a uniform drift, the displacement
attributable to the drift will be consistent across all particles at any specific time. In addition to this
shared displacement, each individual particle will experience a separate displacement due to Brownian
motion, which is what we aim to measure. To put this into mathematical terms, the velocity of the i-th
particle can be represented as follows :

Vi(t) = Varite () + Vaiftusive ()

Now, if we consider the mean velocity < v(f) > of all the particles :

<v(t) >= Z(Vdrift (t) + Vaiftusive (7))

However, the diffusive motions of individual particles are independent of each other. Given a sufficiently
large number of particles, it’s reasonable to expect that the second term in the sum will effectively cancel
out to zero. As the first term in the sum is not influenced by the variable i, we can express it as follows

Varite (1) =< v(t) > (52)

12.6 Software implementation

A home-made softward™3| was developed in Python in order to analyze the raw track data obtained from
TrackMate.

3https://github.com/MLoum/pyAnalyzeTrack. At the time of writing, the code is functional but needs a lot of cleaning and commenting.
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13 EFFECT OF THE ROUGHNESS OF THE PDMS WALL ON THE LIGHT SHEET

13 Effect of the roughness of the PDMS wall on the light sheet

Figure [16] presents the effect of the roughness of the PDMS wall on the light sheet lateral profile, that
is to say, the one that is imaged on the camera and where the cylindrical lens has no focalization effect,
calculated using diffractio for different roughness parameters. More precisely, a correlation length of
t =20um for the roughness of the wall was chosen in accordance with the pixel size of the LCD used
for the photolithography of the master mold for the microfluidics chip. The standard deviation s of the
roughness is changed across the different graphs in Fig.

The numerical simulations show similar tendencies to the experimental images, that is to say, the
apparition of what can be described as rays of light that reduces the intensity homogeneity of the light
sheet. In the case where the Gaussian only crosses one rough PDMS wall, the other one being smooth
out by the contact of the cylindrical lens, and that the rough PDMS wall is in contact with water, the
fringes in the light sheet only appear for s = 1 um.

Figure[L7] presents the effect of the roughness of the PDMS wall on the light sheet axial (i.e. z profile)
calculated using diffractio for different roughness parameters. Abberation on the light sheet profile can
be spotted starting at s = 500nm and from s = Sum the profile is compromised.
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Figure 16 Effect of the roughness on the lateral profile (i.e. the
standard deviation of the roughness. The correlation length of the

PDMS and 1 everywhere else.

one not affected by the cylindrical lens) for different values s of the
roughness was set at # =20um. The index of refraction is 1.44 in the
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Figure 17 Effect of the roughness on the axial profile (i.e. along the optical axis) for different values s of the standard deviation of the

roughness. The correlation length of the roughness was set at r =20um. The index of refraction is 1.44 in the PDMS and 1 everywhere
else.
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15 NTA MOVIES

14 Trapezoidal shape of the microchannel

The beam of UV light used to illuminate the dry film photoresist is not well collimated. Consequently,
the walls of the master mold are slightly inclined and this angle is transferred to the PDMS chip. This
effect can be quantified by imaging a channel on the master mold by its side. The images obtained with
a stereo microscope binoculars are shown in figure

AlL=100 pm B]L =150 um C]L =200 pm D] L =650 um

100_um
: voop b 7o 714 Lo [ 514 e 37°,
! Fr— ™ Lo — b —— S Z |

Figure 18 Images of the master mold imaged on the sides obtained with stereo microscope binoculars. From the picture, the angle of the
wall can be estimated at around 10°.

15 NTA movies

NTA videos are in Audio Video Interleave (AVI) format with MJPEG video codec. They are stored on
the University of Angers cloud.

link 1: https://uabox.univ-angers.fr/index.php /s /k3TXIPu2kLqUPkZ
Filename : x20_ 60fps_50nm_or COsur_ 1000 frames.avi

Movie used to analyze individual particle tracking (NTA) of 50 nm gold nanoparticles. 1000 frames,
frame rate: 60 fps, duration: 16.6 seconds.

link 2: https://uabox.univ-angers.fr/index.php/sMczingNYt Yxy Q21
Filename : x20 60fps_80nm_or_ COsur_ 1000 frames.avi

Movie used to analyze individual particle tracking (NTA) of 80 nm gold nanoparticles. 1000 frames,
frame rate: 60 fps, duration: 16.6 seconds.
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