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1 Laser diode driver
Due to their exponential current-voltage characteristics, laser diodes require precise current control,
which can be achieved using an LM317 voltage regulator con�gured as a current source, providing a
straightforward and cost-e�ective solution. Although there may be more e�cient current source alterna-
tives, the simplicity and ease of implementation of the LM317-based circuit outweigh these considerations
in the context of this study, making it a suitable choice for driving the laser diode.

Figure 1 Schematic of the laser driver based on a LM317 regulator

The schematic of the laser driver is shown in �gure 1. By design, the output current of LM317 is
�xed at 1.25/R. Rpad set a maximum output current when the potentiometer is set at Rp = 0Ω.
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2 OPTIMIZATION OF FIBER INSERTION

2 Optimization of fiber insertion
In the experimental phase involving the integration of optical �bers�either lens or laser �bers�into
the micro�uidic chip, precision and speci�c techniques are essential for successful implementation. The
laser �ber's tip must be accurately positioned within the microchip's dry channel. This can be optimally
achieved by utilizing a binocular microscope and stabilizing the laser �ber on a substrate that is level
with the microchip's own substrate, followed by a controlled forward motion. For applications requiring
a collimated light sheet, the laser �ber tip should be situated approximately at the back focal distance
(BFD). However, in the case of focused light sheets, a higher degree of precision is mandated. The
�nal micrometric adjustments are particularly challenging due to the friction encountered with the
polydimethylsiloxane (PDMS) material. To mitigate the risk of �ber breakage within the microchip�a
scenario that renders the device inoperable�it is advisable to minimize the length of the uncoated �ber
segment to enhance its mechanical resilience.
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3 EFFECT OF THE STEP-INDEX AND GRADIENT-INDEX OPTICAL FIBER ON THE FOCALIZATION OF A GAUSSIAN
BEAM

Figure 2 Numerical simulation obtained with di�ractio[1] in the case of the focalization of a Gaussian beam by a step-index optical �ber

modelized by two concentric spheres : the �rst one with radius 105/2 and refractive index ncore = 1.469 and the second one with a radius

of 125/2 and a refractive index ncore = 1.464.

3 Effect of the step-index and gradient-index optical fiber on the focalization
of a Gaussian beam

Fig. 2 presents the focalization pro�le of a Gaussian beam by a step-index optical �ber modelized by
two concentric spheres the �rst one with radius 105/2 microns and refractive index ncore = 1.46958 and
the second one with a radius of 125/2 microns and a refractive index ncore = 1.46382. No visible e�ects
are apparent at the boundary of the cladding and the core of the optical �ber and no di�erence was
seen in the case with just one sphere with a constant refractive index.
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4 RAY TRANSFER MATRIX OF A BALL LENS

4 Ray transfer matrix of a ball lens
The ray transfer matrix of a thick lens can be seen as the succession of a concave spherical interface
with a radius of curvature R1 separating a medium of refractive index n1 and the lens of refractive index
n2 followed by a length d of free propagation and �nally a convex spherical surface with a radius of
curvature R2 separating the lens from a medium of refractive index n3. Thus, it can be written as [2] :

Mthick lens =

 1 0
1

R2

(
1− n2

n3

)
n2

n3

(1 d
0 1

) 1 0

− 1
R1

(
1− n1

n2

)
n1

n2

 (1)

A ball lens is a special case where the two radii of curvature are the same (R1 = R2 = R) and the
distance d between the two spherical interfaces is equal to the diameter D = 2R of the sphere. Conse-
quently,

Mball lens =

 −1+2
n1

n2
2R

n1

n2

−n1n2 −2n1n3 +n2n3

n2n3R
n1

(
2
n2

− 1
n3

)
 (2)

The image focal distance fimage can be obtained by calculating where a ray parallel to the optical
axis crosses the optical axis after going through the lens. The incoming ray has for vector :

vin =
(

x = 1
θ = 0

)
(3)

where x is the distance from the optical axis and θ is the angle with the optical axis. The light ray
exiting the ball lens has for vector :

vout = Mball lens · vin =
(

xout
θout

)
=

 −1+2
n1

n2

−n1n2 −2n1n3 +n2n3

n2n3R

 (4)

and crosses the optical axis at distance xout/θout from the right side of the ball lens (where we assume
that tanθout ≈ θout as usual for paraxial rays). Subtracting R in order to obtain the distance from the
center of the ball lens, we obtain1 :

fimage =
−n1n2R

n1(n2 −2n3)+n2n3
(5)

When the ball lens is immersed in air, n1 = n2 = 1 and the image focal distance drops back to
fimage =−nD/(4(n−1)) as in the standard textbook [2].

As for the object focal distance, it can be found by �rstly calculating an input light ray that would
give an output ray parallel to the optical axis (with θout = 0) and then calculating the position where
the input ray crosses the optical axis.

vin = (Mball lens)
−1 · vout =

(
xin
θin

)
=


(

2
n2

− 1
n3

)
−n1n2 −2n1n3 +n2n3

n1n2R

 (6)

1Equivalently, we can directly use the formula fimage = A/C where A and C are the ABCD coefficient matrix of the ball lens (cf eq.2)
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4 RAY TRANSFER MATRIX OF A BALL LENS

and crosses the optical axis at distance xin/θin. Adding R to this distance give the object focal
distance fobject2 :

fobject =
n2n3R

n1(n2 −2n3)+n2n3
(7)

Once again, this distance reverts to nD/(4(n−1)) in the case where n1 = n2 = 1 .

If the �rst part of the ball lens is in the air (n1 = 1) and the second part is surrounded by PDMS
(n3 = nP) and if we note the index of refraction of the lens n2 = n, we obtain :

fimage =
−nR

n−2nP+nnP
and fobject =

nnPR
n−2nP+nnP

(8)

In the same conditions, the ABCD matrix is given by :

Mball lens =

 −1+
2
n

2R
n

−n−2nP +nnP

nnPR
2
n
− 1

nP

 (9)

2Equivalently, we can directly use the formula fobject =−D/C where D and C are the ABCD coefficient matrix of the ball lens (cf eq.2
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5 PROPAGATION OF A GAUSSIAN BEAM THROUGH THE OPTICAL SYSTEM

5 Propagation of a Gaussian beam through the optical system
The optical system is schematized in �gure 3.

Figure 3 Optic schematics for the calculation of the Gaussian beam through the di�erent media. The diameter of the ball lens is �xed at

125 µm.

The beam exiting the single mode �ber can be approximated by a Gaussian beam with a waist w0
equal to half the diameter of the mode �eld (here 3.3 µm, hence w0 = 1.75µm and an in�nite radius of
curvature R(z). This beam can be represented by a complex number q with 1/q=−iλ/(πnw(z)2)+1/R(z)
where λ is the wavelength of the light (here λ = 405nm, z is the optical axis coordinate, w(z) is the
waist of the Gaussian beam at position z and R(z) its radius of curvature and n is the refractive index
of the medium of propagation [3]).

The waist at the propagation position z can be obtained through the complex parameter q(z) by :

w(z) =
λ

nπℑ(q)
|q|2 (10)

where ℑ(q) is the imaginary part of q

At the exit of the optical �ber, where the radius of curvature R(z) is in�nite, the complex parameter
of the Gaussian beam q is purely imaginary and equals :

q�ber = i
πw2

0
λ

= izr (11)
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5 PROPAGATION OF A GAUSSIAN BEAM THROUGH THE OPTICAL SYSTEM

where zr = πw2
0/λ is the Rayleigh range.

Using ABCD ray transfer matrix, one can calculate the evolution of the complex parameter q of the
beam through the propagation of the di�erent optics3.

More precisely, the input complex parameter q is transformed in q′ after propagating through an
optic represented by a ABCD matrix via4 [3] :

q′ =
Aq+B
Cq+D

(13)

Propagation from the �ber over the distance s1 to the ball lens in the air leads to the complex
parameter q1 :

q1 = q�ber+ s1 = izr + s1 (14)

The ball lens transform q1 in q2 via

q2 =
Aq1 +B
Cq1 +D

(15)

with the ABCD coe�cient obtained from equation 9. Thus, we can write :

q2 =
BD+(BC+AD+ACs1)s1 +ACz2

r
(Cs1 +D)2 +C2z2

r
+ i

−zr(BC+AD)

(Cs1 +D)2 +C2z2
r

(16)

Propagation in PDMS from the lens to the �uid distanced by s2, microchannel transforms q2 in q3
with:

q3 = q2 + s2 (17)

The refraction between the PDMS and the water at the microchannel interface transforms q3 in q4 via
5

:
q4 =

nw

nP
q3 (18)

where nw = 1.33 is the refractive index of water.

Finally, the beam propagates in the water (distance s3 where it may focalize. It transforms from q4
to q5 with :

q5 = q4 + s3 (19)

Alternatively, one can also form a single matrix for the overall optical system :

Msys =

(
1 s1
0 1

)(
A B
C D

)(
1 s2
0 1

)(1 0
0

nP

nW

)(
1 s3
0 1

)
(20)

3Only the coefficient A and B will affect the waist of the propagating Gaussian beam through the optical system described by an ABCD matrix. More
precisely, the input waist w is transformed into the exit waist w′ via :

w′ = w

√(
λB
πw2

)2

+

(
A+

B
R2

)2

(12)

We can see that if B = 0 and A = 1 then the waist will be unchanged by the optics
4if one wants to trace the beam through the ball lens, like in section 4, then the full ABCD matrix of the ball lens (eq.2) has to be broken into its three

parts like in equation 1.
5The ABCD matrix of refraction at a flat surface from refractive index n1 to n2 is :(

1 0
0

n1

n2

)
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5 PROPAGATION OF A GAUSSIAN BEAM THROUGH THE OPTICAL SYSTEM

The focal spot position z f is reached when the radius of the beam curvature is in�nite and when the
complex parameter q is purely imaginary. This happens when the distance s3 is equal to :

−nW

nP

(
BD+(BC+AD+ACs1)s1 +ACz2

r
(Cs1 +D)2 +C2z2

r
+ s2

)
(21)

In practice, it is maybe easier to use a numerical approach than using a literal formula like eq.21.
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6 RAY TRACING OF A GAUSSIAN BEAM IN THE PARAXIAL APPROXIMATION

Figure 4 Gaussian beam propagation obtained with paraxial Ray transfer matrix calculation in the case of a collimating beam (s1 = 130µm)

6 Ray tracing of a Gaussian beam in the paraxial approximation
Based on the mathematical development presented in the previous SI sections Python scripts were writ-
ten to calculate the propagation of a Gaussian across the optical system using Ray transfer matrix. These
scripts can be found at https://github.com/MLoum/On-chip-light-sheet-illumination-for-nanoparticle-tracking-in-microfluidic-channels.

Figures 4, 5 and 6 presents obtained with the mentioned Python script for di�erent optics con�gura-
tion, namely collimated (�g. 4), slightly converging (�g. 5) and strongly converging (�g. 6). Figures 7,
presents the case where there is no cylindrical lens.
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6 RAY TRACING OF A GAUSSIAN BEAM IN THE PARAXIAL APPROXIMATION

Figure 5 Gaussian beam propagation obtained with paraxial Ray transfer matrix calculation in the case of a slightly convergent beam

(s1 = 150µm).
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6 RAY TRACING OF A GAUSSIAN BEAM IN THE PARAXIAL APPROXIMATION

Figure 6 Gaussian beam propagation obtained with paraxial Ray transfer matrix calculation in the case of a strongly convergent beam

(s1 = 240µm).
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6 RAY TRACING OF A GAUSSIAN BEAM IN THE PARAXIAL APPROXIMATION

Figure 7 Gaussian beam propagation obtained with paraxial Ray transfer matrix calculation when there is no lens but only diopters

(s1 = 300µm, s3 = 100µm).
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7 EVOLUTION OF THE WAIST AND RAYLEIGH LENGTH WITH THE POSITION OF THE OPTICAL FIBER

7 Evolution of the waist and Rayleigh length with the position of the optical
fiber

Figure 8 Evolution of the waist and Rayleigh length with the distance between the optical �ber and the boundary of the cylindrical lens

(and not its center) in the case where the cylindrical lens is in contact with PDMS. The plain line was obtained with ray transfer matrix

calculation whereas the point where obtained used numerical simulation with di�ractio.
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7 EVOLUTION OF THE WAIST AND RAYLEIGH LENGTH WITH THE POSITION OF THE OPTICAL FIBER

Figure 9 Evolution of the waist and Rayleigh length with the distance between the optical �ber and the boundary of the cylindrical lens

(and not its center) in the case where the cylindrical lens is not in contact with PDMS.
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8 GAUSSIAN BEAM PARAMETERS

8 Gaussian beam parameters

Figure 10 Radial pro�le of the intensity of a Gaussian at a given z position along the optical axis. The waist w0 is the radius of the

distance from the center of the beam where the maximum intensity is divided by e2, that is to say 13%.

The intensity of a Gaussian beam is derived from the square of the electric �eld distribution, and
it forms a Gaussian pro�le in the transverse plane perpendicular to the direction of propagation. This
distribution can be written as (see �g 10):

I(r,z) = I0

(
w0

w(z)

)2

e−2r2/w2(z) (22)

In this equation, I0 is the peak intensity at the center of the beam waist, w0 is the waist size, w(z) is
the radius at which the �eld amplitude and intensity are reduced to 1/e and 1/e2 (that is to say 13%)
of their axial values, respectively, and r is the radial distance from the beam axis.

The waist w(z) of the beam evolves along the propagation axis z according to the formula (see �g 11)
:

w(z) = w0

√
1+
(

z
zR

)2

(23)

Here, zR is the Rayleigh range, de�ned as:
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8 GAUSSIAN BEAM PARAMETERS

zR =
πw2

0
λ

(24)

where λ is the wavelength of the light. The waist w0 and Rayleigh range zR are crucial parameters
that completely describe the beam and its evolution along the propagation axis. The waist size w(z)
reaches its minimum, w0, at z = 0 and increases for |z|> 0, illustrating the beam's divergence away from
the focus. At the Rayleigh length zR the beam waist is w(zR) =

√
2w0.

The Full Width at Half Maximum (FWHM) of the intensity pro�le at the beam waist is related to
the waist size by:

FWHM= 2
√

2ln2w0 ≈ 1.1774w0 (25)

Figure 11 Schematic of the pro�le w(z) of a focalizing Gaussian beam that front cases the de�nition of the w0, that is to say the minimum

waist size at the focal point, and the Rayleigh length zr = πw2
0/λ , that is to say, the distance from the focal point where the waist is

w(zR) =
√

2w0
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10 LIGHT-SHEET LATERAL PROFILE

9 Depth of field determination
The depth of the light sheet can change along the width of the channel. For the collimated option, it can
appear due to a miss positioning of the �ber around the focal point but it barely a�ects the thickness
as �gure 12 shows for three di�erent positions. However, for the focused light sheet, inherently to the
beam waist proprieties, the light sheet thickens depending on the distance to the center of the waist.

Figure 12 Estimated light-sheet size with the Z-stack method for di�erent positions between the lens and the �ber. On the right 145 µm,

On the middle 110 µm and on the left 90 µm.

For particle tracking, we established a di�erent de�nition of the depth of �eld (DOF) taking into
account the maximal distance were a particle can be detected from the background noise. Because the
di�raction pattern of an out of focus bead is an airy disk, a simulation can estimate the intensity axial
pro�le of the beads when it goes away from the focal plane. Figure 13 shows the axial evolution of the
central pixels intensity in the di�raction pattern. To generate the theoretical pattern, the scalar-based
di�raction model of Gibson & Lanni is used with the plugin "PSF generator" of Fiji [4].

10 Light-sheet lateral profile
The article mainly deals with the axial pro�le of the light sheet which is the one that is focused by the
cylindrical lens and is the one increasing the signal-to-noise ratio for single particle tracking.

However, the cylindrical lens does not a�ect the lateral evolution of the light sheet. Consequently,
the beam exiting the optical �ber is diverging with a half angle related to the numerical aperture of the
optical �ber namely 0.12. Taking into account the refraction at the air/PDMS boundary and then the
PDMS/water boundary, the calculated lateral half angle divergence of the should be around 4.6◦. This
is con�rmed experimentally as shown in �gure 14 by creating the light sheet with a micro-channel �lled
with a �uorophore (Atto 390) and imaging the corresponding �uorescence on the camera.

Hence, the lateral size of the light sheet where the tracking can be performed is dependent of the
distance between the optical �ber and the micro-channel. However, this distance also determines the
light sheet thickness and homogeneity. Consequently, a compromise has to be found. For instance, in
Fig. 14, only a part of the �eld of view of the microscope is lightened with the light sheet. Placing the
microchannel further away from the optical �ber would have enlarged the zone of study, but at the same
time, it would have changed the light-sheet thickness and its axial homogeneity.
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10 LIGHT-SHEET LATERAL PROFILE

Figure 13 : Simulation of the PSF intensity pro�le along Z axis to approximate the axial volume length lz where a particle can be discerned

from background noise. Left panel shows the input parameters and the right curve is the Z axis intensity pro�le from the central part of

the PSF (4 pixels). The choice of resolution was made to �ts with the experiment. The upper right corner shows the pattern of the PSF

and the value of each pixel describes the XY intensity pro�le. PSF generator, Daniel Sage and Hagai Kirshner, Biomedical Imaging Group

(BIG) EPFL, Lausanne, Switzerland.

Figure 14 Image of the �uorescence of Atto 390 excited with a light sheet. The estimated divergence (around 5◦) is compatible with the

calculated one. The microdevice is the one described in Fig2.B, that is to say with a cylindrical lens but without an air notch.
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11 TRACKMATE DETECTION PROCEDURE

11 TrackMate detection procedure
The TrackMate detection procedure needs to be optimized to adapt the algorithm input. Knowing
that the size of the particles in�uences their velocity, the search radius from the particle position to
the next one is a crucial parameter. The whole detection process is described in the SI of the work on
"Single-Particle Tracking with Scanning Non-Linear Microscopy"[5].

Figure 15 Flowchart of trackmate procedure used in this work.
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12 ANALYZE OF THE TRACK

12 Analyze of the track
12.1 Diffusion equation

It is possible to �nd the equation for di�usion simply using the mass conservation equation and Fick's
�rst law.

Mass conservation mathematically translates the idea that if the amount of matter n has varied in a
control volume V (which is written as

�
V ∂n/∂ t), it's because matter has entered or left through the

boundaries, that is to say, the surface S of V . This can be written as



S jjj ·SSS, where jjj = nvvv is the �ux
vector associated with the particle �ow and SSS = SnnnS, where nS is a vector at every point perpendicular
to the surface S and directed towards the outside. The mathematical transcription of mass conservation
is then written as: �

V

∂n
∂ t

=−
�

S
jjj ·SSS (26)

One can then make the volume V tend towards zero, and the �ux across the surface becomes, almost
by de�nition, equal to the divergence of the �ux vector jjj (this is also known as the Green-Ostrogradsky
theorem).

In the end, we get:

∂n
∂ t

+div jjj = 0 (27)

where n is the particle concentration and jjj = nvvv is the particle current density vector.

Fick's �rst law is described by:
j =−D∇(n) (28)

where D is the translational di�usion coe�cient in ms−2. This law6 mathematically translates that
there exists a particle �ux that tends to equalize concentrations within a sample. More precisely, a
concentration inhomogeneity, which is mathematically translated by the concentration gradient, leads
to the appearance of a particle �ux ( jjj) in the direction where the concentration is the lowest (cf the
minus sign).

Injecting Fick's law (equation 28) into the matter conservation equation 27 leads7 to the di�usion
equation:

∂n
∂ t

= D∆n (29)

12.2 The jump probability

The jump probability is the probability for a particle to be at position r′ after a given time knowing
that it was at position r at t = 0. It directly derives from the di�usion equation.

Formulation The di�usion equation 29 can be rewritten in terms of the probability P(x, t) of �nding the
particle at the abscissa x at time t. This probability also veri�es the di�usion equation, which can be
written in the 1D case as:

∂P(x, t)
∂ t

= D
∂ 2P
∂x2 (30)

6When it was stated in 1865 by Adolf Fick, it was an empirical law. It was later justified at the microscopic scale via statistical physics.
7The gradient of the divergence is equal to the Laplacian graddiv ↔ ∆
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12.2 The jump probability 12 ANALYZE OF THE TRACK

with the initial condition:
P(x, t = 0) = u(x)

where u(x) is any pro�le. In the case of a single particle found at x = 0, u(x) = δ (x) where δ (x) is the
Dirac distribution.

It is possible to solve the di�usion equation to know the jump probability using Fourier Transforms
of the equation8. This leads, in the case of a point-like particle to the jump probability :

Pjump(∆x,∆t) =
1√

4Dπ∆t
,exp(

−(∆x)2)

4D∆t
) (38)

where we have replaced x with the notation ∆x and t with the notation ∆t to indicate that these are
di�erences between two values.

Properties of the jump probability

• The jump probability is a Gaussian with zero mean. Thus, the most probable position of a particle
after a given time9 is its starting position. On the other hand, the probability of the particle moving
to the left (x < 0) is equal to that of moving to the right (x > 0).

• The second moment of the jump probability is its variance Var = σ2 where σ is the standard
deviation. We can directly identify it in the Gaussian of the jump probability and obtain:

σ
2 = 2D∆t (39)

It is then possible to relate the variance σ2 to the mean of the squared displacements < (∆x)2 >
which we will subsequently denote as MSD (for Mean Squared Displacement). Indeed, via the

8

To solve equation 30 we will apply a spatial Fourier transform, (The Fourier transform is indicated by the sign .̂..), to both sides of the equation:

δ ̂P(x, t)
δ t

= D f racδ
2 ̂¶(x, t)δx2 (31)

The derivative property of a Fourier transform allows us to specify the spatial part of the equation (The variable k will indicate the spatial frequency) :

δ 2 ̂P(x, t)
δx2 =−4π

2k2P̂(x, t) (32)

Since we apply a spatial Fourier transform, it will not affect the time derivative:

δ ̂P(x, t)
δ t

=
δ

δ t
P̂(x, t) (33)

The previous transformations, therefore, allow us to write:

δ

δ t
P̂(x, t) =−4Dπ

2k2P̂(x, t) (34)

Which is a first-order linear differential equation whose solution is direct:

P̂(x, t) = P̂(x, t = 0) · e−4Dπ2k2t (35)

To obtain the jump probability of a particle, we need to apply the inverse Fourier transform (F−1), which will then transform the multiplication into
a convolution product:

P(x, t) = P(x, t = 0)∗F−1[e−4Dπ2k2t ] (36)

We have as initial condition P(x, t = 0) = δ (x) since we have a unique particle that is therefore perfectly localized at time t = 0, the inverse Fourier
transform of a Gaussian is calculated simply since the inverse transform keeps the Gaussian form. We then obtain:

P(x, t) = δ (x)∗
(

1√
4Dπt

· exp [
−x2

4Dt
]

)
(37)

As previously said, a particle is considered as point-like, so it is the impulsive response of the diffusive system. In this sense, the jump probability
(eq.38) is the Green’s function of the system. The analytical jump probability for a one-dimensional particle is therefore simply expressed by a Gaussian.

9Any time actually, as the probability is time-invariant.
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12.3 Accounting for Convective Motion 12 ANALYZE OF THE TRACK

Konig-Huygen theorem10

σ
2 =< (∆x)2 >−(< ∆x >)2 =< (∆x)2 > (40)

since the probability has a zero mean < ∆x >.

In the end, and this is a crucial point for what follows, we can relate the di�usion coe�cient D of
a particle to its MSD:

< (∆x)2 >= 2D∆t (41)

We de�ne a typical Brownian motion length Lbrown which corresponds to the average distance11

covered in a given direction by a particle during the time ∆t such as:

Lbrown =
√

2D∆t (42)

This characteristic distance plays a very important role when we want to examine the order of
magnitude of the importance of Brownian motion compared to other phenomena that may occur
experimentally.

Thus, unlike translational motion, the distance covered by a particle via Brownian motion is not
proportional to time (x ̸= vt) but proportional to the square root of time.

• The jump probability, and the associated Brownian motion, has no memory. In more mathematical
terms, there is, theoretically, no correlation between the Brownian jump that occurs between 0 and
∆t and the one between ∆t and 2∆t. By indexing the �rst Brownian jump by n and the next by
n+1 we then have mathematically12:

< ∆xn∆xn+1 >= 0 (43)

In other words, the covariance of two successive jumps is zero.

12.3 Accounting for Convective Motion

Even for small particles, Brownian motion remains relatively weak compared to potential residual con-
vection movements within the �uid.
This is especially true in our case in our studies within micro�uidic chips made of silicone. Indeed, this
material is relatively �exible and its deformation is comparable to the role of a capacitor in an electrical
setup. Just as there is a relaxation time τ = RC for the current i in an electrical circuit, the equivalent
exists in a micro�uidic circuit. The �ow, and the associated convection motion, de�nitively stop only
after a relaxation time. On the other hand, any di�erence in liquid level within the micro�uidic setup
leads to a hydrostatic pressure that can give rise to a non-zero residual �ow.

10Let’s denote the average of a quantity x by < x >. The variance is by definition the moment of order 2 given by:

σ
2 =< (x−< x >)2 >

or in other words, the mean of the squared deviations from the mean. So:

σ
2 =< x2 −2x < x >+(< x >)2 >

Since the mean is distributive and with << x >>=< x >, we can write:

σ
2 =< x2 >−2 < x >< x >+(< x >)2)

to finally obtain:
σ

2 =< x2 >−(< x >)2

11This may seem paradoxical as this distance is not zero, as indicated earlier, the average displacement < ∆x > is zero...
12The mean value of the product of two Gaussians centered at zero also has a mean value of zero.
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12.4 Accounting for Experimental Uncertainties 12 ANALYZE OF THE TRACK

In the presence of a global convective motion at speed v, the Brownian jump probability (eq. 38) is
modi�ed to become [6]:

Pjump, drift(∆x,∆t) =
1√

4Dπ∆t
exp
(
−(∆x−V ∆t)2

4D∆t

)
(44)

The presence of a drift leads to this new jump probability, which in turn modi�es the characteristics of
the motion:

• The average value of the displacements < ∆x > is no longer zero. It is now < ∆x >=V ∆t, i.e., the
displacement due to the drift at speed V during time ∆t.

• The variance of the jump probability remains the same, namely σ2 = 2D∆t but the application of
the Huygens-Kronig theorem now must involve a non-zero average < ∆x > so that:

σ
2 = 2D∆t =< (∆x)2 >−(< ∆x >)2 =< (∆x)2 >−(V ∆t)2 (45)

and we therefore obtain for the MSD < (∆x)2 >:

< (∆x)2 >= 2D∆t +(V ∆t)2 (46)

In the presence of drift, the MSD is no longer proportional to time ∆t and has an additional
quadratic term due to the drift. Even if the speed V of this drift leads to a convection movement
that is weak compared to the amplitude of the Brownian motion (V ∆t ≤

√
2D∆t), its intervention

at power 2 in the expression of the MSD means that it will eventually dominate in the long term.

• Convection motion does not create a memory e�ect and two successive jumps still have no cor-
relation. Indeed, a generalization of the Huygens-Konig theorem allows to write the covariance
Cov(x,y) of two random variables x and y from the expression of their mean.

Cov(x,y) =< P(x)P(y)>−< P(x)>< P(y)> (47)

where P(x) and P(y) are respectively the probability law of x and y which are here the jump
probability of eq.44. Consequently, with a speed V for the drift, the covariance noted here

Cov(x,y) = ((V ∆t)× (V ∆t))− (V ∆t)(V ∆t) = 0 (48)

12.4 Accounting for Experimental Uncertainties

While theoretically, Brownian motion is memoryless, the consecutive displacements of a particle in an
experimental measurement are actually correlated. Mathematically:

< ∆xn∆xn+1 >=< (xn − xn−1)(xn+1 − xn) ≯= 0 (49)

The key point is that both displacements share the n-th frame of the �lm. If there is experimental
uncertainty at the n-th frame, this will arti�cially couple the n and n+1 displacements, making the
covariance < ∆xn∆xn+1 > non-zero.

These uncertainties have two origins :

• The error termed as static error originates from the noise (background noise or even shot noise)
that is a natural part of any experiment involving particle tracking.

• Dynamic error is a result of the time needed for acquiring position measurements, often referred
to as shutter time.

Additionally, it is important to note that during the image acquisition period, the particle continues
to exhibit Brownian motion. Contrary to the motion blur typically observed in convective �ow,
which manifests as a trailing streak, the particle's movement in this context results in a di�usive
halo surrounding its position.
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The community has acknowledged that static localization noise, which is the random deviation in
determining the position of a stationary particle, impacts the Mean Square Displacement (MSD) with
[7]:

< (∆xn)
2 >= 2D∆t +2σ

2

In this context, σ represents the static localization error, which is the standard deviation of the measured
positions for a particle that is not in motion (deposited on a coverslip for instance).

As for the dynamic error, the MSD is modi�ed as :

< (∆xn)
2 >= 2D∆t −4DR∆t , 0 ≤ R ≤ 1/4

where R is the "motion blur coe�cient", describes the pattern of light exposure, or alternatively the
condition of the camera's shutter, throughout the camera's period of image capture [8]. In the most
common case, that is to say full-frame averaging, R = 1/6.

In total, in the case of R = 1/6, we have :

< (∆xn)
2 >= 2D∆t + 2σ

2︸︷︷︸
static

− 2
3

DR∆t︸ ︷︷ ︸
dynamic

This gives rise to two observations :

• This is a substantial correction from the very frequently used unmodi�ed MSD approach. Taking
into account the dynamic error decreases the coe�cient di�usion by 33%.

• As said in the introduction of this section, while a Brownian particle in free motion has displace-
ments that are not correlated, motion blur and static localization noise create correlations in the
displacements that are actually observed.

The localization errors, represented by σ , lead to a negative correlation. This can be comprehended
by recognizing that both ∆k−1 = xk −xk−1 and ∆k = xk+1−xk are in�uenced by the same noise value
at frame k, but with opposing signs.

Motion blur, on the other hand, gives rise to a positive correlation. This is a well-known e�ect that
is akin to a low-pass �lter being applied to the inherent motion when averaging across frames.

The static localization error σ can be obtained experimentally or calculated via the covariance of the
time series of the displacement ∆x :

σ = R < (∆xn)
2 >+(2R−1)< ∆xn∆xn+1 > (50)

In the present study, the amendments introduced by accounting for the localization error denoted
as σ , were relatively minor, on the order of a few percents. However, it was observed that σ exhibited
signi�cant variations between individual tracks, solely attributable to statistical �uctuations. This is not
compatible with the experimental conditions, where the Signal-to-Noise Ratio (SNR) remained almost
constant across the measurement plane. Consequently, it would be more methodologically sound to
establish a �xed experimental value for σ , if feasible.

12.5 Drift correction

A �rst correction can be made only with the data from one track. A pure Brownian motion should
have a zero mean displacement < ∆x >= 0. If it not the case, it can be attributed to a residual drift.
A very simple correction for the drift is then to subtract all displacements in one track from the mean
value of these displacements. This approach is simple to implement but has two limitations. Firstly,
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it assumes that the drift is constant during all the tracks and secondly, even with no drift at all, the
mean of displacements can be di�erent from zero due to statistical �uctuations. More precisely, if a
track contains N points, the con�dence interval on the estimation of the mean < ∆x >estimate from only
those N points is given by the standard error of the mean (SEM) :

< ∆x >estimate=< ∆x >true
s√
N

(51)

Here, s is the sample standard deviation of the displacement values, and N is the number of points in
the track.

The following two techniques[9] are capable of determining drift solely based on the trajectories of
the particles, provided that there are enough particles and that they are adequately sampled.

The �rst one, the centroid method, calculates the mean position of all particles at every moment in
time and considers this average position as representative of the drift. The speed of the centroid position
is taken as the drift. This method is prone to error and needs a large number of particles to have a
correct estimate of a reliable centroid.

The subsequent approach, the drift correction using velocity correlation, addresses these issues by
employing a straightforward observation. Given that we're dealing with a uniform drift, the displacement
attributable to the drift will be consistent across all particles at any speci�c time. In addition to this
shared displacement, each individual particle will experience a separate displacement due to Brownian
motion, which is what we aim to measure. To put this into mathematical terms, the velocity of the i-th
particle can be represented as follows :

vvvi(t) = vvvdrift(t)+ vvvdi�usive(t)

Now, if we consider the mean velocity < vvv(t)> of all the particles :

< vvv(t)>= ∑
i
(vvvdrift(t)+ vvvdi�usive(t))

However, the di�usive motions of individual particles are independent of each other. Given a su�ciently
large number of particles, it's reasonable to expect that the second term in the sum will e�ectively cancel
out to zero. As the �rst term in the sum is not in�uenced by the variable i, we can express it as follows
:

vvvdrift(t) =< vvv(t)> (52)

12.6 Software implementation

A home-made software13 was developed in Python in order to analyze the raw track data obtained from
TrackMate.

13https://github.com/MLoum/pyAnalyzeTrack. At the time of writing, the code is functional but needs a lot of cleaning and commenting.
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13 EFFECT OF THE ROUGHNESS OF THE PDMS WALL ON THE LIGHT SHEET

13 Effect of the roughness of the PDMS wall on the light sheet
Figure 16 presents the e�ect of the roughness of the PDMS wall on the light sheet lateral pro�le, that
is to say, the one that is imaged on the camera and where the cylindrical lens has no focalization e�ect,
calculated using di�ractio for di�erent roughness parameters. More precisely, a correlation length of
t = 20µm for the roughness of the wall was chosen in accordance with the pixel size of the LCD used
for the photolithography of the master mold for the micro�uidics chip. The standard deviation s of the
roughness is changed across the di�erent graphs in Fig. 16.

The numerical simulations show similar tendencies to the experimental images, that is to say, the
apparition of what can be described as rays of light that reduces the intensity homogeneity of the light
sheet. In the case where the Gaussian only crosses one rough PDMS wall, the other one being smooth
out by the contact of the cylindrical lens, and that the rough PDMS wall is in contact with water, the
fringes in the light sheet only appear for s = 1µm.

Figure 17 presents the e�ect of the roughness of the PDMS wall on the light sheet axial (i.e. z pro�le)
calculated using di�ractio for di�erent roughness parameters. Abberation on the light sheet pro�le can
be spotted starting at s = 500nm and from s = 5µm the pro�le is compromised.
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13 EFFECT OF THE ROUGHNESS OF THE PDMS WALL ON THE LIGHT SHEET

Figure 16 E�ect of the roughness on the lateral pro�le (i.e. the one not a�ected by the cylindrical lens) for di�erent values s of the

standard deviation of the roughness. The correlation length of the roughness was set at t = 20µm. The index of refraction is 1.44 in the

PDMS and 1 everywhere else.
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13 EFFECT OF THE ROUGHNESS OF THE PDMS WALL ON THE LIGHT SHEET

Figure 17 E�ect of the roughness on the axial pro�le (i.e. along the optical axis) for di�erent values s of the standard deviation of the

roughness. The correlation length of the roughness was set at t = 20µm. The index of refraction is 1.44 in the PDMS and 1 everywhere

else.
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15 NTA MOVIES

14 Trapezoidal shape of the microchannel
The beam of UV light used to illuminate the dry �lm photoresist is not well collimated. Consequently,
the walls of the master mold are slightly inclined and this angle is transferred to the PDMS chip. This
e�ect can be quanti�ed by imaging a channel on the master mold by its side. The images obtained with
a stereo microscope binoculars are shown in �gure 18

Figure 18 Images of the master mold imaged on the sides obtained with stereo microscope binoculars. From the picture, the angle of the

wall can be estimated at around 10◦.

15 NTA movies
NTA videos are in Audio Video Interleave (AVI) format with MJPEG video codec. They are stored on
the University of Angers cloud.

link 1: https://uabox.univ-angers.fr/index.php/s/k3TXIPu2kLqUPkZ

Filename : x20_60fps_50nm_or_C0sur_1000_frames.avi

Movie used to analyze individual particle tracking (NTA) of 50 nm gold nanoparticles. 1000 frames,
frame rate: 60 fps, duration: 16.6 seconds.

link 2: https://uabox.univ-angers.fr/index.php/sMczfngNYtYxyQ2I

Filename : x20_60fps_80nm_or_C0sur_1000_frames.avi

Movie used to analyze individual particle tracking (NTA) of 80 nm gold nanoparticles. 1000 frames,
frame rate: 60 fps, duration: 16.6 seconds.
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