An accurate and sensitive determination of selected pesticides in mixed fruit juice

samples using the combination of a simple and efficient microextraction method and

GC-MS with matrix matching calibration strategy

Supplementary Material

Parameter	Optimum condition	
Spraying number	1	
Extraction Solvent	1,2-dichloroethane	
Sample volume	12.0 mL	
Mixing type	Vortex	
Mixing period	30 s	

 Table S1. The optimum conditions for the developed VA-SFDF-LPME method.

Analyte	Low Concentration Level, µg/kg	%RSD
Chlorbenside	4.93	4.0 (n=6)
Mepanipyrim	0.11	5.9 (n=6)
Hexaconazole	4.91	5.5 (n=6)
Norflurazon	0.58	3.4 (n=6)
Fenhexamid	5.06	6.7 (n=6)
Ipconazole	4.88	5.2 (n=6)
Fluridone	0.57	6.7 (n=6)
Indoxacarb	4.91	3.3 (n=6)
Analyte	Medium Concentration Level, µg/kg	RSD%
Chlorbenside	26.17	5.3 (n=3)
Mepanipyrim	1.11	5.0 (n=6)
Hexaconazole	26.10	6.6 (n=3)
Norflurazon	10.04	4.9 (n=3)
Fenhexamid	26.89	9.2 (n=3)
Ipconazole	25.92	14.2 (n=3)
Fluridone	2.62	10.0 (n=6)
Indoxacarb	26.11	3.3 (n=3)
Analyte	High Concentration Level, µg/kg	RSD%
Chlorbenside	100.94	6.2 (n=3)
Mepanipyrim	4.93	3.1 (n=3)
Hexaconazole	100.65	5.9 (n=3)
Norflurazon	103.42	3.9 (n=3)
Fenhexamid	103.68	5.3 (n=3)
Ipconazole	99.97	3.3 (n=3)
Fluridone	4.94	4.2 (n=3)
Indoxacarb	100.68	0.4 (n=3)

Table S2. %RSD values belonging to low, medium and high concentration in calibration plot levels for the analytes.

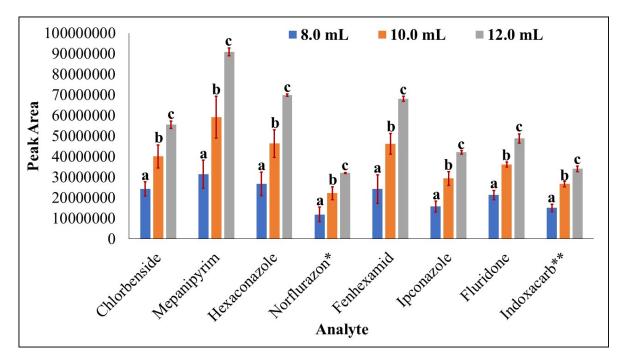


Figure S1. Sample volume optimization (* and ** indicates 2 and 10 times scaled up peak areas and their standard deviations, respectively, n=3). The concentrations of chlorbenside, mepanipyrim, hexaconazole, norflurazon, fenhexamid, ipconazole, fluridone, indoxacarb were 50.01 μg/kg, 49.23 μg/kg, 49.87 μg/kg, 51.24 μg/kg, 51.37 μg/kg, 49.53 μg/kg, 50.14 μg/kg, 49.88 μg/kg, respectively. Constant parameters: 1,2-dichloroethane as the extraction solvent, one spraying, and 30 s of vortex mixing.

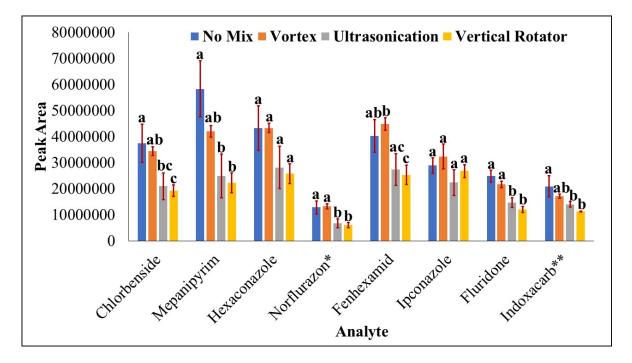


Figure S2. Mixing type optimization (* and ** indicates 2 and 10 times scaled up peak areas and their standard deviations, respectively, n=3). The concentrations of chlorbenside, mepanipyrim, hexaconazole, norflurazon, fenhexamid, ipconazole, fluridone, indoxacarb were 40.63 µg/kg, 40.00 µg/kg, 40.51 µg/kg, 41.63 µg/kg, 41.73 µg/kg, 40.24 µg/kg, 40.73 µg/kg, 40.52 µg/kg, respectively. Constant parameters: 1,2-dichloroethane as the extraction solvent,

12.0 mL of sample volume, one spraying, and 30 s of each mixing process.

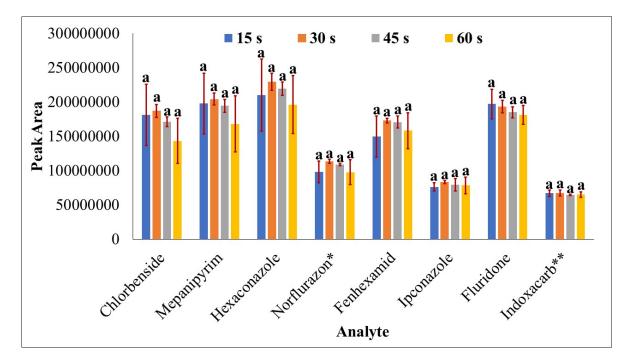


Figure S3. Mixing period optimization (* and ** indicates 2 and 10 times scaled up peak areas and their standard deviations, respectively, n=3). The concentrations of chlorbenside, mepanipyrim, hexaconazole, norflurazon, fenhexamid, ipconazole, fluridone, indoxacarb were 37.14 μg/kg, 36.57 μg/kg, 37.04 μg/kg, 38.05 μg/kg, 38.15 μg/kg, 36.79 μg/kg, 37.24 μg/kg, 37.05 μg/kg, respectively. Constant parameters: 1,2-dichloroethane as the extraction solvent, 12.0 mL of sample volume, one spraying, and vortex mixing.

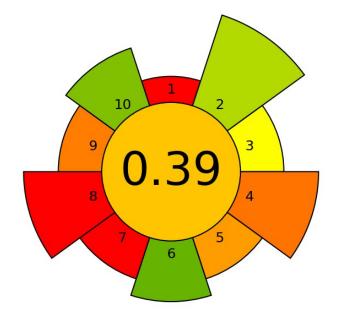
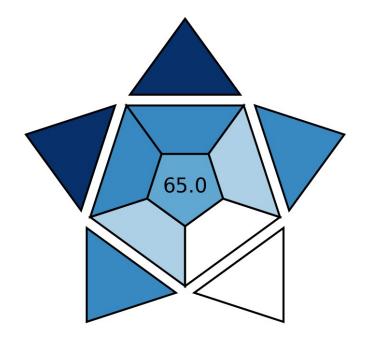



Figure S4. The pictogram generated from the AGREEprep software for the developed VA-SFDF-LPME-GC-MS method.

Figure S5. The pictogram produced from the BAGI software for the developed VA-SFDF-LPME-GC-MS method.