A TISSUE-ENGINEERED NEURAL INTERFACE WITH PHOTOTHERMAL FUNCTIONALITY

<u>Adriana Teixeira do Nascimento</u>^{1,2}, Alexandre Xavier Mendes^{1,2}, James M. Begeng^{1,3}, Serena Duchi^{2,4}, Paul R. Stoddart⁵, Anita F. Quigley^{2,7,8}, Robert M. I. Kapsa^{2,7,8}; Michael R. Ibbotson^{3,9}, Saimon M. Silva^{1,2,6*}, Simon E. Moulton ^{1,2,6*}

¹ ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia

² The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia

³ National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia

⁴ Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia

⁵ School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

⁶ Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia

⁷ School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia

⁸ Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia

⁹ Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria 3010, Australia

Figure S1 - Electrochemical cell designed for the electrochemical investigations.

Figure S2 - Laser instrumentation setup used for the NIR Optical Stimulation containing: A) Biosafety cabinet, B.1) Laser system; B.2) Optic fibre end; C) Thermal camera; D) Visible camera; and E) Scaffold standing platform.

Figure S3 - Material characterisation presenting the confirmation of composite functionalisation through the EDC/Sulfo-NHS covalent conjugation in the UV-vis spectra for the wavelength range 200-1000 nm. A) Composite binding confirmation through the comparison of the UV-vis spectra of both GO (1.25 mg.mL⁻¹) and GO-AuNRs (1.25: 0.25 mg.mL⁻¹) showing its photoactivity in the NIR range by the presence of the SPR peak \approx 512 nm and LSPR peak \approx 762 nm (inset spectrum). B) FTIR spectra of AuNRs (protein-A coated), GO (1.25 mg.mL⁻¹), and GO-AuNRs (1.25; 0.25 mg.mL⁻¹) for the wavenumber range of 600-4000 cm⁻¹, performed to further confirm the composite functionalisation of the hydrogel. C) Cyclic voltammetry (CV) electrochemical characterisation with the potential range from 0 to 1.2V and scan rate 0.05 V/s, highlighting the electroactivity of the composite within the hydrogel by presenting redox peaks around \approx +0.6 V (oxidation) and \approx -0.5 V (reduction). D) Bode plot presenting the impedance of the composites at a range of concentration in mg.mL⁻¹.

Figure S4 - Dependence of the current peak (Ipa and Ipc) versus the concentration of the composite in mg.mL⁻¹ extracted from the CV (Figure 1C) presenting the linear behaviour of the samples indicating that the redox reaction is reversible.

Figure S5 - Cyclic voltammogram recorded between 0 to 1.2 V at a scan rate 0.05 V/s, highlighting the electroactivity of GO within the hydrogel by presenting redox peaks around \approx + 0.75 V (oxidation) and \approx - 0.65 V (reduction).

The impedance values measured at 3 frequencies from the Bode plot (Figure S3D) are presented in Table S1.

Samples	Concentrations	Z (Ω) x 10 ²			
Samples	(mg.mL ⁻¹)*	3x10 ² Hz	1 kHz	3kHz	
GelMA	5% w/v	2.5	2.3	2.2	
GelMA-GO- AuNR	0.30-0.06	2.4	2.2	2.1	
	0.40-0.08	2.3	2.1	2.1	
	0.50-0.10	2.3	2.1	2.0	
	0.60-0.12	2.1	1.1	1.9	
	0.70-0.14	2.1	1.9	1.8	

Table S1 - EIS investigation presenting the decrease in the current inversely proportional to the increase in the concentration in mg.mL⁻¹ at higher frequencies.

*The first and second concentration value for the GelMA-GO-AuNR samples is the GO and AuNR respectively.

Table S2 - Summary of mechanical characterisation results extracted from the data presented in Figure 1.

Samples	Concentrations	Units	Storage modulus (kPa)	Crosslinking rate (s)	Yong's modul us (kPa)	Swelling ratio
GelMA	5%	w/v	0.3 ± 0.13	270 ± 0.04	3± 0.10	18 ± 0.03
GelMA-GO	0.30	mg.mL ⁻¹	0.6 ± 0.07	308 ± 0.04	3 ± 0.07	14 ± 0.04
	0.50		0.7 ± 0.01	282 ± 0.03	4 ± 0.05	13 ± 0.02
	0.70		0.8 ± 0.04	286 ± 0.04	4 ± 0.07	11 ± 0.05
GelMA- GO-AuNRs	0.30-0.06		0.6 ± 0.05	312 ± 0.03	3 ± 0.07	13 ± 0.02

0.50.0.10	(0.8 ±	322 ± 0.02	4 ±	12 ± 0.05
0.50-0.10		0.05		0.07	
0.70.0.14	(0.2 ±	305 ± 0.04	4 ±	12 ± 0.02
0.70-0.14		0.04		0.02	

*The first and second concentration value for the GelMA-GO-AuNR samples is the GO and AuNR respectively.

Figure S6 – SEM pictures presenting the morphology for the cross-section of the scaffolds. A) GelMA, B) GelMA-GO and C) GelMA-GO-AuNR.