SUPPLEMENTARY INFORMATION

for:

Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents

Laura Maria Slavu ^{1,†}, Antonella Antonelli ^{2,†,*}, Emanuele Salvatore Scarpa ², Pasant Abdalla ², Claire Wilhelm ³, Niccolò Silvestri ⁴, Teresa Pellegrino ⁴, Konrad Scheffler ⁵, Mauro Magnani ², Rosaria Rinaldi ^{1,6,7,*} and Riccardo Di Corato ^{7,8,*}

¹ Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Monteroni, Lecce 73100, Italy

² Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, Urbino 61029, Italy

³ Laboratoire Physico Chimie Curie, UMR 168, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France

⁴ Italian Institute of Technology, via Morego 30, 16131 Genoa, Italy

- ⁵ Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- ⁶ Scuola Superiore ISUFI, University of Salento, Via Monteroni, University Campus, Lecce 73100, Italy
- ⁷ Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
- ⁸ Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano 73010, Italy
- [†] These authors contributed equally to this work
- * Corresponding authors: riccardo.dicorato@cnr.it, antonella.antonelli@uniurb.it, ross.rinaldi@unisalento.it

Sample	T of iron salts solution	T of NH ₄ OH solution	DLS size (nm)	PDI	
MNPs 1	25°C	25°C	68.01	0.246	
MNPs 2	25°C	30°C	35.89	0.569	
MNPs 3	25°C	40°C	37.99	0.214	
MNPs 4	25°C	60°C	50.99	0.421	
MNPs 5	30°C	30°C	24.07	0.283	
MNPs 6	40°C	40°C	45.22	0.227	
MNPs 7	60°C	60°C	37.43	0.286	
MNPs 8	30°C	25°C	43.60	0.275	
MNPs 9	40°C	25°C	32.48	0.220	
MNPs 10	60°C	25°C	38.46	0.282	

Table S1. List of the magnetic nanoparticles (MNPs) obtained by variation of solutions temperature.

Table S2. List of iron oxide nanoparticles obtained by stabilizing the co-precipitated particles with different concentrations of sodium citrate solution.

Sample	Citrate solution concentration	DLS size (nm)	PDI	
MNPs 11	0.5 M	29	0.327	
MNPs 12	1 M	35	0.340	
MNPs 13	2M	45	0.272	

Table S3. List of MNPs obtained varying the nucleation step duration, modifying the ammonium hydroxide rate addition, ranging from 30 seconds to 10 minutes. The standard procedure considers 2 minutes as optimal step duration, confirmed by the TEM and DLS analysis.

Sample	Nucleation time	DLS size (nm)	PDI
MNPs 23	30 sec		
MNPs 24	1 min		
MNPs 25	2 min	51.14	0.197
MNPs 26	4 min	169.4	0.242
MNPs 27	10 min		

Figure S1. TEM images of MNPs 25 (a) and MNPs 26 (b) obtained respectively with 2 and 4 minutes of nucleation step time. All scale bars correspond to 100 nm.

Figure S2. TEM analysis of Zn-Mn Ferrite nanoparticles obtained by varying the precursors ratio in the synthesis, as reported in Table 3. Zn-Ferrite (MNPs 33) and Mn-Ferrite (MNPs 38) nanoparticles are reported respectively in panel a) and b); MNPs 35 and 36 are reported respectively in panel c) and d). All scale bars correspond to 50 nm.

Figure S3. DLS analysis of dextran-coated nanoparticles, MNPs 29 and MNPs 40, after longstorage (1 year) at room temperature.

Figure S4. TEM images of slices of human RBCs loaded with **a**) MNPs 20_{DX-filt.0.22} and **b**) MNPs 20_{DX-filt.0.1}.

Ferucarbotran[®] contrast agent (Gold Standard)

Ferucarbotran[®], consisting of iron oxides (28 mg Fe/ml) carboxydextran coated with a size of 57 nm, was obtained from Prof. Ikiro Kato (Meito Sangyo Co., Ltd. Nagoya Research Lab., Japan). This contrast agent was previously evaluated for the encapsulation into human and murine red blood cells (RBCs) following the same procedure of hypotonic dialysis, isotonic resealing and reannealing applied for the new MNPs suspensions as reported in ref.¹

The Fe concentrations incorporated into human and murine RBCs obtained at the end of loading procedure were estimated by NMR relaxation measurements using a dose-response curve (**Figure S5**) generated by adding known amounts of Ferucarbotran[®] contrast agents to human or murine RBC samples.

The values of $(1/T1_c-1/T1_0)$ or $(1/T2_c-1/T2_0)$ were plotted versus the concentration of Ferucarbotran[®] and were fitted by least squares method to a straight line, the slope of which is the longitudinal (*r1*) or transversal (*r2*) relaxivity.

Figure S5. NMR dose-response curves generated by adding known iron concentrations (ranging from 0 to 12 mM Fe) of Ferucarbotran suspension to human RBCs at 44% Ht (**a** and **b**) and murine RBCs (**c** and **d**). The longitudinal r1 and transverse r2 relaxivities were reported for human (r1=1.3003; r2=87.228) and murine (r1=1.2128; r2=84.976) RBCs.

Table S4. Data obtained after the loading of MNPs $29_{DX-filt 0.1}$ and MNPs $40_{DX-filt 0.1}$ nanoparticles with **human** RBCs by using 11.2 mg Fe/ml RBC70%. Values are expressed as means \pm SD of three similar experiments.

Sample	T1 (ms)	T2 (ms)	Fe [mM]	MCV (fl)	MCH (pg)	MCHC (g/dl)	Cell recovery (%)
UL-RBCs	$2069 \pm \! 15.6$	$62.1\pm\!\!1.3$	/	$77.5\pm\!\!0.7$	25.2 ± 0.6	34.3 ± 1.3	72 ± 1.2
L3-MNPs 29	$481.5\pm\!123$	<5	1.5 ± 0.5	72.2 ± 3.7	21.8 ± 3.2	29.4 ±2.1	54.9 ± 7.3
L3-MNPs 40	196.5 ± 77.2	<5	2 ±0.9	$73.5\pm\!\!1.7$	21.4 ± 3.3	$28.6\pm\!\!4.2$	$46.5\pm\!\!0.7$
L3-Ferucarbotran	110±25	<5	6.81±1.43	70.8±2.3	19.9±1.4	29.1±3.1	66.5±3.6

Figure S6. TEM images of slices of non-dialyzed human RBCs.

Figure S7. TEM images of human Ferucarbotran[®]*-loaded RBCs obtained by using 11.2 mg/ml RBCs 70% Ht during the dialysis step of loading procedure. (a, b) whole-Ferucarbotran*[®]*-loaded RBCs; (c, d) slices of Ferucarbotran*[®]*-loaded -RBCs.*

References

 Antonelli, A.; Szwargulski, P.; Scarpa, E. S.; Thieben, F.; Cordula, G.; Ambrosi, G.; Guidi, L.; Ludewig, P.; Knopp, T.; Magnani, M. Development of Long Circulating Magnetic Particle Imaging Tracers: Use of Novel Magnetic Nanoparticles and Entrapment into Human Erythrocytes. *Nanomedicine* 2020, 15, 739-753.