Supporting Information

Ionic gel incorporating copper nanodots with antibacterial and antioxidant dual functions for deep tissue penetration treatment of periodontitis in rats

Yiru Gao, Wenxin Zhang, Rong Xue, Yang Shu*, Jianhua Wang* Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China E-mail: <u>shuyang@mail.neu.edu.cn</u> (Y. Shu), jianhuajrz@mail.neu.edu.cn (J.H. Wang).

Figure S1. (A) FT-IR spectrum of Cu-NDs nanozymes. (B) FT-IR spectra of CS and CS-GA. (C) UV-vis absorption spectra of CS, GA and CS-GA. (D) FT-IR spectra of HEAA and PHEAA/CS-GA gel.

Figure S2. FT-IR spectra of IL, PHEAA/CS-GA gel and IL gel.

Figure S3. (A) Typical force–displacement curves for PHEAA/CS-GA gel and Cu-NDs /IL gel. (B) Lap-shear strength curves for PHEAA/CS gel, PHEAA/CS-GA gel and Cu-NDs /IL gel. (C) Photographs of PHEAA/CS-GA gel and Cu-NDs /IL gel adhered to skin. Photographs of PHEAA/CS-GA gel and Cu-NDs/IL gel adhered to different substrates.

Figure S4. (A) Photographs of PHEAA/CS-GA gel and Cu-NDs/IL gel adhered to different substrates. (B) Photographs of PHEAA/CS-GA gel and Cu-NDs/IL gel adhered to moist biological tissues.

Figure S5. The cumulative percentage of Cu-NDs permeated after incubation with Cu-NDs gel and Cu-NDs/IL gel.

Figure S6. (A) The variations of POD-like activity at different concentrations of Cu-NDs (60, 120, 240, 480, and 960 μ g/ml) with TMB (1 mM), H₂O₂ (2 mM) at pH 6. (B) The changes of POD-like activity of Cu-NDs at various pH values (pH 3, 4, 5, 6, and 7) with TMB (1 mM), Cu-NDs (960 μ g/ml) and H₂O₂ (2 mM).

Figure S7. Michaelis-Menten kinetic analysis (A) and Lineweaver-Burk Fitting (B) of POD-like activity of Cu-NDs.

Figure S8. Percentage loss of GSH with the variation of Cu-NDs concentration (240, 480 and 960 μ g/ml). GSH: 1 mM, DTNB: 0.1 mM.

Figure S9. (A) GSH depletion in the presence of Cu-NDs/IL gel containing different concentrations of Cu-NDs (240, 480, and 960 μ g/ml). (B) Percentage loss of GSH with Cu-NDs/IL gel containing different concentrations of Cu-NDs (240, 480, and 960 μ g/ml), GSH: 1 mM, and DTNB: 0.1 mM.

Figure S10. (A) H_2O_2 scavenging ratio of different concentration of Cu-NDs (0, 240, 480, and 960 µg/ml) with H_2O_2 (1 mM) at 37°C for 30 min. (B) O_2 - scavenging ratios for different concentrations of Cu-NDs (240, 480, and 960 µg/ml) with riboflavin (20 µM), methionine (12.5 mM), NBT (75 µM) in PBS (pH 7.4) and irradiated with ultraviolet light for 20 min.

Figure S11. (A) UV-vis absorption spectra of TMB in the POD-like test of Cu-NDs/IL gel containing various concentrations of Cu-NDs (240, 480, and 960 μ g/ml) with H₂O₂ (2 mM) and TMB (1 mM). (B) The variations of CAT-like activity of Cu-NDs/IL gel containing various concentrations of Cu-NDs (240, 480, and 960 μ g/ml) with H₂O₂ (1 mM) at 37°C for 30 min. (C) H₂O₂ scavenging ratio of Cu-NDs/IL gel containing various concentrations of Cu-NDs (240, 480, and 960 μ g/ml) with H₂O₂ (1 mM) at 37°C for 30 min. (C) H₂O₂ scavenging ratio of Cu-NDs/IL gel containing various concentrations of Cu-NDs (240, 480, and 960 μ g/ml) with H₂O₂ (1 mM) at 37°C for 30 min. (D) Evaluation of CAT-like activity of Cu-NDs/IL gel through O₂ production at concentration of 240 μ g/ml Cu-NDs in Cu-NDs/IL gel. (E) Assessment of SOD-like property of PHEAA/CS-GA gel and Cu-NDs/IL gel through O₂⁻⁻ elimination. (F) O₂⁻⁻ scavenging ratios of Cu-NDs/IL gel containing various concentrations of Cu-NDs/IL gel containing various concentrations of Cu-NDs/IL gel containing various concentrations of Cu-NDs/IL gel containing various have been property of PHEAA/CS-GA gel and Cu-NDs/IL gel through O₂⁻⁻ elimination. (F) O₂⁻⁻ scavenging ratios of Cu-NDs/IL gel containing various concentrations of Cu-NDs (240, 480, and 960 μ g/ml) and PHEAA/CS-GA gel (diameter 5 mm) with riboflavin (20 μ M), methionine (12.5 mM), NBT (75 μ M) in PBS (pH 7.4) and irradiated with ultraviolet light for 20 min.

Figure S12. Representative photographs of bacteria cocultured with IL gel (5 mg/ml) or Cu-NDs/IL gel containing various concentrations of Cu-NDs (240, 480, and 960 μ g/ml) with 500 μ M H₂O₂.

Figure S13. The antibiofilm effects of (A) *S. aureus*, (B) *E. coli* and (C) *S. mutanus* cocultured with IL gel (5 mg/ml) or Cu-NDs/IL gel containing various concentrations of Cu-NDs (240, 480, and 960 μ g/ml) with 500 μ M H₂O₂.

Figure S14. The viability of RAW 264.7 cells after incubation for 24 h with different concentrations of Cu-NDs (0-800 µg/ml) (A), blank gel, IL gel (IL: 5 mg/ml) or Cu-NDs/IL gel (containing 240, 480, and 960 µg/ml Cu-NDs) (B).

Figure S15. The hemolysis rate of blood cells by treatment with various concentrations of (A) Cu-NDs at 120, 240, 480, 960, 1500 and 2000 µg/ml, (B) IL gel (IL: 5 mg/ml) and Cu-NDs/IL gel (containing 240, 480, 960 µg/ml Cu-NDs). (C, D) The photographs of hemolysis in the above tests.

Figure S16. The viability of RAW 264.7 cells after incubation for 24 h with various concentrations of (A) H_2O_2 (50, 100, 200, 400, 500, 800, and 1000 µg/ml) and (B) LPS (2.5, 5, 10, 20, and 40 µg/ml) (B). (n \geq 3, **p < 0.01)

Figure S17. Cu-NDs (120, 240, 480, and 960 μ g/ml) protecting RAW 264.7 cells from the oxidative stress caused by (A) H₂O₂ (500 μ M) and (B) LPS (10 μ g/ml) (n \geq 3, **p < 0.01).

Figure S18. CLSM images of RAW 264.7 cells after different treatments with EdU staining to serve as proliferation indicator. H_2O_2 : 500 μ M, LPS: 10 μ g/ml, Cu-NDs/IL gel: containing 480 μ g/ml Cu-NDs. BF was bright field.

Figure S19. The expression of TNF-a after LPS (10 μ g/ml) and Cu-NDs/IL gel treatment (containing 120, 480, and 960 μ g/ml Cu-NDs). (n \geq 3, * p < 0.05, **p < 0.01).

Figure S20. CFU numbers of gingival tissues after treatment with 960 μ g/ml Cu-NDs gel and Cu-NDs/IL gel (containing 960 μ g/ml Cu-NDs).

Figure S21. Body weight changes of the rats during the period of various treatments.

Figure S22. H&E staining of heart, liver, spleen, lung and kidney after different treatments.

Catalyst	Substrate	K _m [mM]	V _{max} [µM min ⁻¹]	Ref.
Cu-CD	H_2O_2	1.6	1.77 mgL ⁻¹ s ⁻¹	1
SAFe-NMCNs	H_2O_2	0.63	0.756	2
C-NP	H_2O_2	0.38	0.246	3
C-NFs	H_2O_2	0.31	2.480	3
HMSN@Au	H_2O_2	50.76	23.712	4
Cu-NDs	H_2O_2	0.66	1.458	This work

Table S1. Steady-state kinetic parameters of various nanozymes and Cu-NDs with H_2O_2 as the substrate for POD-like catalysis.

References

- M. Liu, L. Huang, X. Xu, X. Wei, X. Yang, X. Li, B. Wang, Y. Xu, L. Li and Z. Yang, ACS Nano, 2022, 16, 9479–9497.
- Y. Su, F. Wu, Q. Song, M. Wu, M. Mohammadniaei, T. Zhang, B. Liu, S. Wu,
 M. Zhang, A. Li and J. Shen, *Biomaterials*, 2022, 281, 121325.
- Y. Xing, L. Wang, L. Wang, J. Huang, S. Wang, X. Xie, J. Zhu, T. Ding, K.
 Cai and J. Zhang, *Adv. Funct. Mater.*, 2022, 32, 2111171.
- 4 M. Chen, J. Song, J. Zhu, G. Hong, J. An, E. Feng, X. Peng and F. Song, *Adv. Healthc. Mater.*, 2021, **10**, 2101049.