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1. Regression Model: Infectivity Prediction 

 

 

LASSO and RIDGE regression models were trained on the training set peptides, represented as 

100-d numerical vectors using continuous vector representations; the models perform similarly 

(Figure S1). Since LASSO regression applies regularization by minimizing the number of non-zero 

coefficients, the resulting model contains only the relevant parameters. This results in a simpler 

model with fewer parameters. For example, for our model only 21 vectors have a non-zero 

coefficient (Eqn. 1). Interestingly, while RIDGE regression equation contains all the vector 

components, it offers slightly poorer correlation as shown in (Figure S1). 

 

(Eqn. 1) Log Infect. Rel EF-C = -2.004 + (-0.496) * vec40 + (-0.467) * vec4 + (-0.374) * 

vec30 + (-0.276) * vec68 + (-0.239) * vec8 + (-0.212) * vec20 + (0.179) * vec55 + (-

0.17) * vec88 + (0.153) * vec16 + (0.131) * vec59 + (0.129) * vec57 + (0.099) * 

vec100 + (-0.095) * vec43 + (0.06) * vec22 + (0.057) * vec46 + (-0.05) * vec99 + (-

0.03) * vec71 + (0.024) * vec60 + (-0.009) * vec61 + (-0.009) * vec54 + (-0.002) * 

vec52  

 

Mean squared error = 0.179 

Mean absolute error = 0.328 

R2= 0.695 

Pearson R = 0.837 

 

All code and data used in ML training are openly available at https://gitlab.com/arghyadutta/seq-

to-infect. 

  

 
 
  
 
  
 
 
 
  
   
 
  
  
  
  

           

    

    

   

                    

          

           
                    

              

 

Figure S1 A LASSO and B RIDGE linear regression models were trained via a 5-fold cross 

validation. 
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2. Aggregation Prediction  

 

Aggregation was found as a necessary property for infectivity enhancement of peptides previously 

by us and others.1–4 Therefore, we applied the open accessible protein-aggregation tools Tango,5 

APPNN,6 Waltz,7 PATH,8 Aggrescan9 and PASTA 2.010 to preselect promising de novo created 

peptides.  

Aggrescan is based on statistical analysis of the aggregation-propensity value for each amino acid 

residue in the sequence and a subsequent aggregation prediction by hot spot regions, identified 

from the peptide aggregation profile. Here, we consider a sequence as amyloidogenic if there is at 

least one predicted hotspot. 

Waltz applies statistical analysis of a sequence and was originally developed by position specific 

matrix for 1089 short 6-mer peptides sequences, which were experimentally determined for fibril 

formation.7 Here, we considered a sequence as amyloidogenic if at least one amyloidogenic region 

was detected upon entry of following parameters: threshold custom 0-100 and pH 7.0. 

Tango is designed to predict aggregating regions in unfolded polypeptide chains. statistical 

mechanics algorithm. The method is benchmarked against experimentally observed 179 

peptides.5 Here, we applied following input parameters to determine the β-sheet aggregation 

tendency (aggregation parameter): pH 7.4, 298 K, ionic strength 0.1724. We select a threshold 

above 5.0% over 5 residues to identify hotspots for aggregation as suggested by the authors to 

determine amyloidogenic sequences.5 

PATH is a structure-based method for predicting amyloidogenicity by threading and machine 

learning. Here, we considered a peptide as aggregating if at least one amyloidogenic region was 

calculated. 

PASTA 2.0 is based on energetic functions which were determined experimentally from protein 

structures interactions potential and H-bond formation between all non-consecutive residues for 

parallel and anti-parallel -pairing. A sequence is considered amyloidogenic if the pasta energy 

for the lowest predicted pairing is lower or equal to the threshold stated by the authors (-4.0).10 

The parameters for the prediction was threshold custom, top pairing energy 20, energy threshold 

-2 PEU, large scale true, protein-protein analysis: false. 

APPNN applies a neural network machine learning approach based on the analysis of seven 

physicochemical and biochemical features such as β-sheet frequency, hydrophobic moment, helix 

termination parameters or isoelectric point. A sequence was considered amyloidogenic if at least 

one of these six amino acid windows was classified amyloidogenic. 
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Except for Waltz, these prediction tools were developed based on a polypeptide and protein 

aggregation and not on short self-assembling peptides. To find the best performing tool for our 

self-assembling peptide library, we applied the experimental data on self-assembly by electron 

microscopy4 (Table S1) as a dataset to evaluate the accuracy and reliability of each tool for self-

assembly with the accuracy and receiver operating characteristic (ROC) value. The accuracy was 

calculated from the confusion matrix according to Eqn.2. 

(Eqn.2)   𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ ∑ 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

The ROC value for the prediction (Figure S2) was calculated with 10-fold stratified cross-

validation and the experimental fibril formation as target value and a logistic regression learner 

and LASSO regularization model (17 strength) with the data-mining software orange3.11 

The prediction tools Aggrescan, APPNN and PATH performed best with an accuracy of 76%, 69% 

and 69%, respectively. Even though these aggregation prediction tools are trained on 

polypeptides and proteins, the reported accuracy for these tools match well to our self-assembling 

peptide library composed of short peptides. Noteworthy, combining Aggrescan, APPNN and PATH 

increase the performance of aggregation further (Figure S2). 

Therefore, we applied Aggrescan, APPNN and PATH to predict aggregation propensity of the de 

novo predicted 3669 sequences. A sequence was considered aggregating, if at least two of 

Aggrescan, APPNN or PATH were positive. By applying this method 424/3669 peptides were 

predicted for aggregation by at least two of these tools.  

As shown in Figure S3 the aggregation tools performed with comparable accuracy for the selected 

16 peptides as determined by Aggrescan 75% for the training set (Figure S3C) and 63% for the 

de novo predicted peptides (Figure S3D). 
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Figure S2 A Evaluation of the protein-aggregation tools Tango,5 APPNN,6 Waltz,7 Path,8 Aggrescan9 

and PASTA 2.010 with the training set (EF-C based library, Table S1). B ROC value for the prediction 

calculated with 10-fold stratified cross-validation and the experimental fibril formation as target 

value and a logistic regression learner and Lasso regularization model with 17 strength. 
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Figure S3 Aggregation prediction tools applied on 16 de novo created peptides. A Summary of aggregation 

prediction results, predicted infectivity according to ProtVec LASSO model Eqn. 1, calculated 

hydrophobicity and comments on selection criteria. B Comparison of experimental and predicted 

aggregation. Experimental aggregation was determined by TEM fibril formation. 8 peptides were 

predicted for aggregation and 8 peptides were not predicted for aggregation by at least two of the tools 

Aggrescan, APPNN and PATH. C The accuracy of aggregation prediction by applying at least two prediction 

tools is determined 75 %. D Aggregation prediction accuracy for Aggrescan only calculated by confusion 

matrix for predicted peptides is 63 %.  
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3. N-gram similarity for predicted peptides with training set 

The N-gram sequence similarity of the net charge positive peptides (total 3669) predicted for 

infectivity enhancement with the training set was calculated to ensure a diverse selection of 

peptides semantically close and far away from the training set. The N-gram similarity factor 

quantifies the similarity of two strings and returns 0 for the same sequence and 1 for sequences 

Figure S4 Absolute abundance of amino acids in net charge positive peptides (total 3669) predicted for 

infectivity enhancement. Cysteine (C) and Tryptophan (W) are the most prevalent amino acids. 

                 
               

                         
   

                  

              
                     

                  
            

                     

                     

                      

                     

                    

                     

                  

                   

                        

                   

                         

                     

                     

                     

                      

                    

Figure S5 Overview of N-gram similarity values between the selected sequences and the training set. 

Average N-gram similarity describes the mean N-gram value between one selected sequence with 

every sequence of the training set. The highest similarity value shows the lowest value (highest 

similarity) for each selected sequence and the corresponding sequences from the training set. Values 

are colored gradually from red (0) – blue (1).  
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which have nothing in common. We applied the algorithm by Kondrak12 for 2-grams with the 

python script shown in https://github.com/luozhouyang/python-string-similarity.git 

In Table S5 a matrix of all 3669 peptides N-gram similarity values with the training is listed. As 

shown in Figure S5 the N-gram similarity values of the selected 16 peptides cover a wide range 

between 0.33 to 0.93 to quantify the diversity of selected sequences. 

 

4. Evaluation of De Novo Peptide Activity with Property–Activity Model4 

Three of the newly predicted peptides show unexpected activity despite negative Zeta-potential. 

To test whether these peptides follow a different mode of action a property activity model 

determined for the training set was applied on the de novo created peptides. The model 

established by multivariate analysis is shown in Eqn. 3.4  

(Eqn. 3)   Log Infect Rel Ef-C = -2.33462 + 0.02128*(Zeta-potential)+ 0.29879*(Log Count Rate) 

+0.27355*(fibril formation) + 0.26241 (Hydrophobicity) + 0.10744 (ThT-activity) + 

0.00356 (β—sheet). 

The peptides found from machine-learning are matching the model with a Pearson correlation 

coefficient of R = 0.75, which is comparable to the Pearson correlation coefficient of R = 0.82 found 

for the training set.4 Noteworthy, the peptides which show at first glance unexpected behavior can 

be explained well with this model. According to this model the peptides HVWCIF, HFICIC, HICLFW 

are active due to their extraordinary high hydrophobicity and successive aggregation which 

outweighs the contributions of the moderately negative zeta-potential.  

 

 

  



10 
 

5. TEM micrographs  

                        

                        

                        

                        

                  

            

 

 

Figure S6 A TEM micrographs of de novo created peptides,1 mg/mL, PBS with 10% DMSO, incubated for 1d at 

RT, scale bar 1 µm. B Enlarged view on selected peptide fibrils of A, scale bar 100 nm. 
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6. Infectivity Data 

 

7. Cell-Viability  

  

Figure S7 HIV-1 infection rates relative to EF-C (QCKIKQIINMWQ) at 1.3 µM concentration shown for the peptides from ML-

prediction at 1.3 µM.  

 

  

  

  

  

   

   

   

   

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
   
 
  
 
   
  
  
  

                       

Figure S8 Cell viability normalized to 100% metabolic activity as determined by CellTiterGlo Assay of the 16 predicted 

peptides. Cell viability is maintained for all peptides at all tested concentrations (0.26 µM, 1.3 µM and 6.5 µM). 
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8. FT-IR Data  

HVWCIF HFICIC ICICLK HICLFW

HVWWNF CKWWNW RMMFFH CKFICR

WWNFLH CQFICR YGWNFK FKFWWN

IYMHVW IKIWWN FHVWNF RICICR

Figure S9 ATR FT-IR spectra of de novo created peptides. 
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9. Impact of Disulfide Bond Formation on Self-Assembly 

Thiol groups from the side chain of cysteine can undergo disulfide bond formation with other thiol 

groups, which is known to influence self-assembly properties.13 

To study the impact of disulfide bond formation of cysteine rich short peptides, we applied tris(2-

carboxyethyl)phosphine (TCEP)14 in 10 molar equivalents excess to break disulfide bonds, 

exemplarily studied for the peptide ICICLK. Transmission electron microscopy was performed to 

evaluate nanoscopic morphology, and brightfield microscopy was performed to evaluate 

microscopically large aggregation (Leica DMi8, 10x air objective). Surface charge and microscopic 

aggregation were evaluated via zeta-potential measurements. 

Breaking disulfide bonds drastically changes the peptide assembly properties of ICICLK (Figure 

S10). Without disulfide bonds, no fibril formation (Figure S10 A) and no microscopic aggregation 

(Figure S10 B, D) can be observed, which also results in reduced surface charge (Figure S10 C).  

Interestingly, for the original peptide EF-C in the training set, the addition of TCEP is has no visible 

influence on fibril formation and aggregation (Figure S10 F). This is likely due to the stabilizing 

effect of the alternating amphiphilic sequence pattern found in EF-C, which was identified earlier 

by us to drive assembly also without the presence of cysteine.2,4 

Thus, we conclude that disulfide bond formation is a critical feature for self-assembly of the 

newly identified 6-mer peptides. 
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Figure S10 Effects of breaking disulfide bond on peptide self-assembly, aggregation, and surface charge of 
cysteine-rich peptide ICICLK. The peptide was incubated at room temperature for 1 day without and with 10 
molar equivalents excess Tris(2-carboxyethyl) phosphine (TCEP). Then, the peptide was diluted from 10 mg/mL 
DMSO to 1 mg/mL in phosphate buffered saline, pH 7.4 (ICICLK) or in TCEP in phosphate buffered saline, pH 7.4. 
A Transmission electron microscopy micrographs depicting fibrillar (ICICLK) and non-fibrillar (ICICLK + TCEP) 
structures, scale bar 1 µm. B Brightfield microscopy images of peptide samples without (visible aggregates) and 
with TCEP (no visible aggregation), scale bar 200 µm. C Zeta-potential measurements and D derived count rate 
of scattered light of peptide samples without and with TCEP. F Transmission electron microscopy micrographs, 
scale bar 100 nm and brightfield microscopy images, scale bar 200 µm depicting fibrillar EF-C (QCKIKQIINMWQ) 
structures without (left) and with TCEP (right). 
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10. Amino acid Composition Analysis 

To explore potentially common amino acid compositions between highly active peptides in the 

training set and the newly discovered active 6-mer peptides, we conducted a simplified, coarse-

grained analysis. This analysis calculates the percentage of charged, hydrophobic, and hydrogen-

bonding amino acids in peptides using the Hopp–Woods amino acid classification (Figure S11 A, 

Code S1).15 Additionally, we coarse-grained the peptide activity into three thresholds: "high" 

(infectivity relative to EF-C > 0.7), "medium" (infectivity relative to EF-C > 0.1), and "low" 

(infectivity relative to EF-C < 0.1) active sequences. 

The analysis of the training set revealed that peptides categorized as "high" and "medium" active 

contained a higher proportion of hydrophobic amino acids, while "low" activity peptides 

displayed a greater prevalence of charged amino acids (Figure S11 B). Remarkably, this same 

trend was observed in the de novo predicted peptides. The four active peptides, HVWCIF, HFICIC, 

ICICLK, and HICLFW, displayed a significantly higher content of hydrophobic amino acids 

compared to charged or hydrogen-bonding classified amino acids, which were predominantly 

found in non-active sequences (Figure S11 C). 

It is worth noting that traditional prediction methods often rely on a predetermined set of 

descriptors. In contrast, the vector embedding approach employed in our study allows for the 

identification of underlying descriptors without any such assumptions. Therefore, a data-driven 

approach utilizing vector embeddings provides the flexibility to uncover latent descriptors that 

may have been not considered previously.  

            
   

         
           

          
 

        
        

          

            

          

            
   

         
           

          
 

        

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

                                
                    

                               
                         

                               

                                   
                                     
                   
                                  
             

            

                                   

       

                                    
                                      
                                   

Figure S11 Comparison of the amino acid composition of the training set and the de novo predicted peptides. 
A To quantify the amino acid distribution, the amino acids and the activity were coarse-grained. The amino-acid 
compositions of a peptide were calculated by counting the number of each Hopp–Woods type amino acids 
(charged, hydrogen-bonding, or hydrophobic) in it and normalizing each count by the peptide’s length (Code 
S1). B The peptides of the training set were categorized in high, medium, and low active sequences. High active 
peptides have on average a higher percentage of hydrophobic amino acids. C The active de novo predicted 
sequences (bold) have a higher percentage of hydrophobic amino acids compared to inactive sequences. 
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11. Training Set  

 

Table S1 Binary representation of aggregation prediction results by protein-aggregation tools Tango,5 

APPNN,6 Waltz,7 PATH,8 Aggrescan9 and PASTA 2.010 for the training set. The experimental evaluation for 

fibril formation by TEM was reported previously by us.4 Fibril formation is indicated by 1, no fibril formation 

is indicated by 0. The Log Infectivity enhancement relative to EF-C (QCKIKQIINMWQ) at 1.3 µM is retrieved 

from our previous report.4 

sequence Log Infect 
Rel. EF-C at 
1.3 µM 

Fibril formation 
by TEM 

Tango APPNN  Waltz  Path  Aggrescan PASTA 2.0 

CKIKIQIII -0.01 1.0 0 1 1 1 1 1 

CEIEIQI -1.55 1.0 0 1 0 0 0 0 

CKIKQIINM -0.30 1.0 0 1 0 0 1 1 
CKFKFQFNMWQ 0.06 1.0 0 1 0 0 1 0 

CKFKFQFNM 0.09 1.0 0 0 0 0 1 0 
CKFKFQF 0.09 1.0 0 0 0 0 1 0 

KFKFQFNMW -0.35 1.0 0 1 0 0 1 0 
KFKFQFNM -0.33 1.0 0 0 0 0 1 0 

KFKFQFN -1.74 1.0 0 0 0 0 1 0 
CKAKAQANMWQ -1.36 0.0 0 1 0 0 0 0 

CKAKAQANM -1.50 0.0 0 0 0 0 0 0 

QCKFKQFFNMWQ -0.61 1.0 1 1 0 0 1 0 
QCKFKQFFNM -0.37 1.0 0 0 0 0 1 0 

QCKFKQFF -1.91 1.0 0 0 0 0 0 0 
CKFKQFFNMWQ  -0.21 1.0 1 1 0 0 1 0 

CKFKQFFNM -0.39 1.0 0 0 0 0 1 0 
CKFKQFF -2.17 0.0 0 0 0 0 0 0 

QCKIKIQINM -0.40 1.0 0 1 0 1 1 0 
QCKAKAQANMWQ -1.14 0.0 0 1 0 0 0 0 

QCKAKAQANM -1.83 0.0 0 0 0 0 0 0 
QCKAKAQA -1.60 0.0 0 0 0 0 0 0 

QCKIKIQI -0.95 1.0 0 0 0 0 1 0 

QCKIKQIINM -0.46 1.0 0 0 0 0 1 1 
QCKIKQII -2.19 1.0 0 1 0 0 0 0 

QCKFKFQFNMWQ -0.21 1.0 0 0 0 0 1 0 
QCKFKFQFNM -0.29 1.0 0 1 0 0 1 0 

QCKFKFQF -0.12 1.0 0 0 0 0 1 0 
CRFRFQF -0.46 1.0 0 0 0 0 0 0 

HIHIQIC -0.57 1.0 0 0 0 1 1 1 
RLRLTLC -1.29 1.0 0 1 0 1 1 0 

HLHLPLL -2.00 0.0 0 0 0 0 0 0 
RGECKFKFQF -0.48 1.0 0 0 0 0 1 0 

RGEKIKIQINM -0.61 1.0 0 1 0 1 1 0 

KYKGAIIGNIK -2.51 0.0 1 1 0 0 1 1 
HGDKCHGDKC -1.99 0.0 0 0 0 0 0 0 

RPRGLLLGNLR -1.32 0.0 0 1 0 0 1 0 
KKFQKKFQ -1.54 0.0 0 0 0 0 0 0 

PPFHPPPFHP -1.75 0.0 0 0 0 0 0 0 
MDQMDQMDQMDQMDQ -2.37 0.0 0 0 0 0 0 0 

FDPFDPFDP -1.63 0.0 0 0 0 0 0 0 
TKTLTKTL -1.67 0.0 0 0 0 0 0 0 

FKFDKFKFDK -1.33 0.0 0 0 0 0 0 0 
KVKGVGK -1.59 0.0 0 0 0 0 0 0 

SISISRRI -1.55 0.0 0 0 0 0 0 0 

HRRHFRHKITKKK -1.87 0.0 0 0 0 0 0 0 
KNERIKNERI -1.89 0.0 0 0 0 0 0 0 

KIRGKFEKED -1.24 0.0 0 0 0 0 0 0 
CKFQC -1.64 0.0 0 0 0 0 0 0 

MKFM -1.76 0.0 0 0 0 0 0 0 
CKFC -1.96 0.0 0 0 0 0 0 0 

RGDKIRGDKI -2.13 0.0 0 0 0 0 0 0 
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KNDKND -1.98 0.0 0 0 0 0 0 0 
HGEHGE -2.19 0.0 0 0 0 0 0 0 

HGEHGEHGE -1.72 0.0 0 0 0 0 0 0 
CRFRVPF -1.70 0.0 0 0 0 0 0 0 

CHLHLQL -1.01 0.0 0 1 0 0 0 0 
CETMYDKILKNLSRSR -1.72 0.0 0 0 0 0 0 0 

MKFKFQF -1.20 1.0 0 0 0 0 1 0 
QCKIKQIINMWQ 0.00 1.0 1 1 0 0 1 1 

QCKIKIQINMWQ 0.02 1.0 0 1 0 1 1 1 

KIKIQINMWQ -0.53 1.0 0 1 0 1 1 1 
NMWQKAKAQA -1.38 1.0 0 0 0 0 0 0 

NMWQKFKFQF -0.57 1.0 0 0 0 0 1 0 
KVKVKVQV -1.76 0.0 0 0 0 0 1 0 

KIKQIINMWQ -0.46 1.0 1 1 0 0 1 1 
KAKAQANMWQ -2.15 0.0 0 1 0 0 0 0 

KFKFQFNMWQ -0.12 1.0 0 1 0 0 1 0 
KFKQFFNMWQ -1.05 0.0 1 1 0 0 1 0 

KAKQAANMWQ -1.51 0.0 0 1 0 0 0 0 
NMWQKVGTPL -1.61 0.0 0 0 0 0 0 0 

NMWQKIKQII -1.60 0.0 0 0 0 0 0 0 

NMWQKIKIQI -0.69 1.0 0 0 0 0 1 0 
KIKQIINM -0.35 1.0 0 1 0 0 1 1 

KIKQIIN -1.40 0.0 0 1 0 0 1 0 
KIKIQINMW 0.33 1.0 0 1 0 1 1 1 

KIKIQINM -0.44 1.0 0 1 0 1 1 0 
KIKIQIN -0.58 1.0 0 1 0 1 1 0 

KAKAQA -1.74 0.0 0 0 0 0 0 0 
KIKIQI -1.17 0.0 0 0 0 0 1 0 

KFKFQF -1.21 0.0 0 0 0 0 1 0 
KIKIQINMWA -0.16 1.0 0 1 0 1 1 1 

EIEIEIEI -1.75 1.0 0 1 0 0 0 0 

KIKIQINMAQ -0.67 1.0 0 1 0 1 1 0 
KIKIQINAWQ -0.27 1.0 0 1 0 1 1 0 

KIKIQIAMWQ -0.41 1.0 1 1 0 1 1 0 
KIKIKIKIYYYY 0.14 0.0 1 1 1 1 1 1 

HHHHEIEIEIEI -1.53 0.0 0 1 0 0 0 0 
KYKYQY -1.99 0.0 0 0 0 0 0 0 

EFEFQF -2.49 0.0 0 0 0 0 0 0 
CEFEFQF -2.28 1.0 0 0 0 0 0 0 

CKFKFQFNMW -0.02 1.0 0 1 0 0 1 0 
CKYKYQY -1.39 0.0 0 0 0 0 0 0 

KWKWQW -1.84 0.0 0 0 0 0 0 0 

CKWKWQW -0.60 1.0 0 0 0 0 0 0 
KLKQLL -2.13 0.0 0 0 0 0 0 0 

CKIKIQINMWQ -0.16 1.0 0 1 0 1 1 1 
RGDKIKIQI -1.81 1.0 0 0 0 0 1 0 

CKIKIQINM 0.20 1.0 0 1 0 1 1 0 
CKIKIQI 0.01 1.0 0 0 0 0 1 0 

CKIKQII -1.38 1.0 0 0 0 0 0 0 
CKIKQIINMWQ 0.09 1.0 1 1 0 0 1 1 

KIKIQIRGD -1.68 1.0 0 0 0 1 1 0 
RGDKIKIQIC -0.08 1.0 0 1 0 1 1 0 

RGDKIKIQINM -0.38 1.0 0 1 0 1 1 0 

RGDKIKIQINMWQ -0.12 1.0 0 1 0 1 1 1 
KFKFEFEF -1.55 1.0 0 0 0 0 0 0 

KIKQII -2.31 0.0 0 0 0 0 0 0 
KIEIQINM -1.46 1.0 0 1 0 1 0 0 

CKIKIQIRGD -0.48 1.0 0 0 0 1 1 0 
CKIKQIIRGD -1.31 0.0 0 0 0 0 1 0 

RGDKIKIQINMC 0.03 1.0 0 1 0 1 1 0 
CQFQFQF -0.45 1.0 0 1 0 0 0 0 

KIKIQII -1.73 1.0 0 1 0 1 1 1 
KFKFQFFF -0.39 1.0 0 0 1 1 1 0 

KIKIKIQI -1.01 1.0 0 0 0 1 1 0 

KAKAKAQA -2.06 0.0 0 0 0 0 0 0 
KLKLKLQL -1.01 1.0 0 0 0 0 0 0 

KFKFKFQF -0.10 1.0 0 0 0 0 1 0 
KVKVQVV -2.04 0.0 0 1 0 0 1 1 

KLKLQLL -2.16 1.0 0 0 0 1 0 0 
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KFKFQFF -0.91 1.0 0 0 0 1 1 0 
KIKIQIII -0.45 1.0 0 1 1 1 1 1 

KVKVQVVV -1.46 1.0 0 1 0 0 1 1 
HHHHKAKAKAKAYYYY -1.88 0.0 0 0 1 0 1 0 

KIKIQIC -0.22 1.0 0 1 0 1 1 0 
RGDSKIKIQIC -0.22 1.0 0 1 0 1 1 0 

RGDSGGGGGGKIKIQIC -0.06 1.0 0 1 0 1 1 0 
ILKNLSRSRKIKIQIC -0.47 1.0 0 1 0 1 1 0 

KIKIKIKIWWWW -0.23 0.0 0 1 1 1 1 1 

KIKIKIKI -1.49 0.0 0 0 0 1 1 0 
CEFEFQFNMWQ -0.85 1.0 0 1 0 1 0 0 

CSISIQI -1.25 1.0 0 1 0 0 1 0 
CEIEIQINMWQ -0.66 1.0 0 1 0 1 0 0 

CEIEIQINM -1.19 1.0 0 1 0 1 0 0 
CSISIQINM -0.70 1.0 1 1 0 1 1 0 

KAKAQANM -2.05 0.0 0 0 0 0 0 0 
CKAKAQA -1.50 0.0 0 0 0 0 0 0 

HHHHKIKIQINMYYYY 0.04 1.0 1 1 1 1 1 1 
KIKIKIKIWW -0.43 0.0 0 0 0 1 1 1 

HHHHKIKIKIKIWWWW -0.42 0.0 0 1 1 1 1 1 

MKIKIQINM -0.56 1.0 0 1 0 1 1 0 
RGDCKIKIQINM -0.63 1.0 0 1 0 1 1 0 

MKIKIQINMWQ -0.38 1.0 0 1 0 1 1 1 
HHHHKIKIKIKIYYYY -0.17 0.0 1 1 1 1 1 1 

RGDCKFKFQF -0.82 1.0 0 0 0 0 1 0 
KIKIQIW -0.85 1.0 0 1 0 1 1 1 

KFKFQFW -0.79 1.0 0 0 0 1 1 0 
CKFKFQFW -0.06 1.0 0 0 0 1 1 0 

EIKIQINM -1.00 1.0 0 1 0 1 0 0 
IKVAVKIKIQINM -0.30 1.0 0 1 0 1 1 1 

HHHHKAKAKAKAWWWW -1.05 0.0 0 0 1 0 1 0 

CKIW -1.29 0.0 0 0 0 0 0 0 
CKIKIQINMW 0.11 1.0 0 1 0 1 1 1 

ILKNLSRSRKIKIQINMWQ -0.49 1.0 0 1 0 1 1 1 
EIEIQINM -1.44 1.0 0 1 0 1 0 0 

KIKIQINMWWQ 0.51 0.0 1 1 0 1 1 1 
KIKIQINMWWWQ 0.44 0.0 1 1 1 1 1 1 

KFKQFFINMWQ -0.04 1.0 1 1 1 1 1 1 
KIKIQIMWNQ -0.25 1.0 1 1 0 1 1 1 

KIKIQIMQWN -0.15 1.0 0 1 0 1 1 0 
KIKIQINMWQRGD -1.92 0.0 0 1 0 1 1 1 

EIEIQINMWQ -0.88 0.0 0 1 0 1 0 0 

KIKIKIQINMWQ -0.10 1.0 0 1 0 1 1 1 
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12.  Predicted Peptides Characterization 

 

Table S2 Physicochemical characterization of the selected de novo peptides. Shown are the absolute infection rates (Abs. Infect) at 6.5, 1.3, 0.26 and 0 µM peptide 

concentration. The logarithmic infection relative to EF-C (Log Infect Rel EF-C) refers to 1.3 µM concentration. Fibril formation is determined by transmission electron 

microscopy (Figure S6) and -sheet content is determined by ATR-FT-IR spectroscopy (Figure S9). Standard deviations (Std Dev) are determined by triplicate 

measurements. 

 Abs 
Infect 
[RLU/s] 
at 6.5 
µM 

Std Dev. Abs 
Infect 
[RLU/s] 
at 1.3 
µM 

Std Dev. Abs 
Infect 
[RLU/s] 
at 0.26 
µM 

Std 
Dev. 

Abs Infect 
[RLU/s] at 
0 µM 

Std 
Dev. 

Infect. 
Rel-to 
EFC 1.3 
µM 

Std 
Dev. 

Log 
Infect 
Rel to 
EFC 

Std 
Dev. 

Zeta-
Pot. 

Std Dev. Count 
Rate / 
kcps 

Count 
Rate 
Std 

Fibril Hydro-
phobici
ty 

ThT 
active 

 sheet 
[%] 

HVWCIF 2E+05 18915 111453 12016 56677 9587 40407 1946 0.55 0.08 -0.26 0.06 -9.41 0.40 26175 7913 1 1.46 1 44 

HFICIC 2E+05 27604 83800 28416 28200 5615 35653 5134 0.42 0.15 -0.38 0.15 -1.91 0.22 25360 7713 1 1.43 1 54 

ICICLK 2E+05 21794 75363 2873 50423 5753 40407 1946 0.37 0.04 -0.43 0.04 33.43 1.20 3220 1783 1 1.23 0 38 

HICLFW 1E+05 37786 61983 22561 18680 6151 40407 1946 0.31 0.12 -0.51 0.16 -9.02 0.67 10024 3381 1 1.54 1 44 

HVWWNF 62177 790.5 21423 4777 15823 2689 39163 2823 0.11 0.03 -0.97 0.10 3.64 0.23 2219 758 1 1.17 1 37 

CKWWNW 27287 1426 13610 3071 8167 1749 35653 5134 0.07 0.02 -1.17 0.10 -1.83 0.82 2453 2899 0 1.12 1 26 

RMMFFH 17607 3346 14603 5405 19163 8998 35653 5134 0.07 0.03 -1.14 0.16 -1.82 0.40 21 9 0 0.86 0 33 

CKFICR 25873 4155 12463 3991 9960 3079 35190 2493 0.06 0.02 -1.21 0.14 4.97 0.65 11 11 1 0.78 0 37 

WWNFLH 17167 6199 12610 3089 11870 1369 40407 1946 0.06 0.02 -1.20 0.11 -6.01 0.70 18 3 0 1.25 0 2 

CQFICR 23253 6640 8617 1592 5157 2902 35190 2493 0.04 0.01 -1.37 0.09 20.53 0.60 586 136 1 0.91 1 33 

YGWNFK 13143 2312 8433 2530 11340 7237 35653 5134 0.04 0.01 -1.38 0.14 -3.06 2.50 56 25 0 0.57 0 6 

FKFWWN 7317 6784 4607 1344 3757 983 35653 5134 0.02 0.01 -1.64 0.13 -4.89 0.26 244 159 0 1.08 0 32 

IYMHVW 10627 6870 7553 2037 5907 2901 40407 1946 0.04 0.01 -1.43 0.12 5.16 1.42 21 5 0 1.27 0 40 

IKIWWN 8810 6012 6837 2474 6010 2049 35653 5134 0.03 0.01 -1.47 0.16 -9.90 1.26 171 57 0 1.09 0 37 

FHVWNF 13743 10451 6007 2070 8390 2290 40407 1946 0.03 0.01 -1.52 0.15 -16.53 0.68 1427 931 1 1.10 0 49 

RICICR 11550 6543 5030 4903 2860 163 35190 2493 0.03 0.02 -1.60 0.42 4.52 0.28 41 18 0 0.78 0 47 
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Table S3 contains information on top 12320 sequences from Monte Carlo ProtVec LASSO model 

screening with information on predicted infectivity, hydrophobicity, and net charge and is openly 

available at the following data repository DOI: 10.5281/zenodo.7708290  

Table S4 contains information on top 3669 peptides with a net positive charge with information 

on aggregation prediction results from Aggrescan, APPNN, and PATH and is openly available at 

the following data repository DOI: 10.5281/zenodo.7708290 

Table S5 contains information on N-gram similarity matrix composed of top 3669 peptides and 

163 peptides from the training set and is openly available at the following data repository DOI: 

10.5281/zenodo.7708290  

Code S1 is a python script for calculating the amino acids composition of charged, hydrogen 

bonding, and hydrophobic amino acids in a peptide sequence library according to Hopp–Woods 

classification.15 The code and the corresponding training set of coarse-grained peptides are openly 

available at the following data repository DOI: 10.5281/zenodo.8004720     
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