Supporting Information

Supramolecular Presentation of Bioinstructive Peptides on Soft Multilayered Nanobiomaterials Stimulates Neurite Outgrowth

Maria Lopes,^a Marília Torrado,^{b,c} Daryl Barth,^{a,d} Sofia D. Santos,^b Melike Sever-Bahcekapili,^{e,f} Ayse B. Tekinay,^e Mustafa O. Guler,^g Franck Cleymand,^d Ana P. Pêgo,^{b,c} João Borges,^{*a} João F. Mano^{*a}

^aCICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

^bINEB – Instituto de Engenharia Biomédica & i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal

^cICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal

^dInstitut Jean Lamour, UMR 7198 CNRS – Université de Lorraine, Parc de Saurupt CS 50840, 54011 Nancy Cedex, France

^eInstitute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey

^fInstitute of Neurological Sciences and Psychiatry, Hacettepe University, 06230 Ankara, Turkey

^gThe Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA

*Corresponding authors: joaoborges@ua.pt (J.B.); jmano@ua.pt (J.F.M.)

Fig. S1 (A) Liquid chromatogram and (B, C) mass spectra of K_2PA . (B) $[M+H]^+$ (calculated): 782.58 , $[M+H]^+$ (observed): 782.59, $[M+2H]^{+2}/2$ (calculated): 391.79, $[M+2H]^{+2}/2$ (observed): 391.80. (C) $[M+H]^+$ (calculated): 782.58 , $[M+H]^+$ (observed): 782.59.

(B)

Fig. S2 (A) Liquid chromatogram and (B, C) mass spectra of K₂PA-IKVAV. (B) [M+H]⁺ (calculated): 1292.93, [M+H]⁺ (observed): 1292.94, [M+2H]⁺²/2 (calculated): 646.96, [M+2H]⁺²/2(observed): 646.97. (C) [M+H]⁺ (calculated): 1292.93, [M+H]⁺ (observed): 1292.94.

Fig. S3 Quantitative analysis of the CD spectra of individual K_2PA and K_2PA -IKVAV molecules and HA/K₂PA and HA/K₂PA-IKVAV co-assembled supramolecular systems (1:1 v/v).

Fig. S4 Representative TEM micrographs of the nanofibrous structure formed by (A) K_2PA -IKVAV, (B) K_2PA , (C) HA/ K_2PA -IKVAV, and (D) HA/ K_2PA systems (1:1 v/v ratio) at 0.2 mg/mL, with nanofiber widths highlighted in white and twisted nanofibers highlighted with red arrows. The magnification factor is x100k. Scale bars: 300 nm.

Fig. S5 Build-up of the supramolecular multilayered thin films. Real time QCM-D monitoring of the normalized frequency ($\Delta f_n/n$; solid line) and dissipation (ΔD_n ; dashed line) changes, obtained at the 7th overtone (n = 7; 35 MHz), as a function of time for the build-up of (PLL/HA)₅/PLL multilayered nanofilms onto Au-coated quartz crystal sensors and subsequent adsorption of an K₂PA-IKVAV outer layer. Numbers refer to the adsorption of PLL (1, 5), HA (3), K₂PA-IKVAV (7), and rinsing steps (2, 4, 6 and 8).

Fig. S6 QCM-D study of the stability of the supramolecular multilayered films. Build-up of the (PLL/HA)₅ multilayered nanofilm onto Au-coated quartz crystal sensors and subsequent adsorption of K₂PA-IKVAV molecules as the outer layer (top image), and further exposure of the film to cell culture medium for 4 days (bottom image). The $\Delta f_n/n$ (solid line) and ΔD_n (dashed line) changes as a function of time were obtained at the 7th overtone (n = 7; 35 MHz).

Fig. S7 Representative AFM 2D topographic image for the (PLL/HA)₅/K₂PA-IKVAV functionalized Au substrate suggesting the deposition of nanofibrillar-like structures above the biopolymeric film surface. The original image was converted to grey, corrected for uneven illumination and background subtracted using ImageJ software. Scale bar: 1 μ m.

Fig. S8 Morphology of primary neuronal cortical cells at 4 days of *in vitro* culture on uncoated and LbL coated Au surfaces. Representative fluorescence microscopy images of primary neuronal cortical cells at 4 days of culture on the bare Au substrate, and (PLL/HA)₅/PLL, (PLL/HA)₅/PLL/K₂PA and (PLL/HA)₅/PLL/K₂PA-IKVAV functionalized Au substrate, after immunostaining with β -III tubulin (green), f-actin filaments (red), and nuclei counterstaining with Hoechst (blue). Scale bars: 100 µm.