## **Electronic Supplementary Information**

## Membrane interaction and selectivity of novel alternating cationic lipid-nanodisc assembling polymers

Michelle D. Farrelly<sup>[a]</sup>, Jiali Zhai<sup>[b]</sup>, Alice Y.J. Tiong<sup>[c]</sup>, Leonie van 't Hag<sup>[c]</sup>, Heidi H. Yu<sup>[d]</sup>, Jian Li<sup>[d]</sup>, Lisandra L. Martin<sup>[a]\*</sup>, San H. Thang<sup>[a]\*</sup>

[a] School of Chemistry, Monash University, Clayton, VIC 3800 Australia.

[b] School of Science, STEM College, RMIT University, Melbourne, VIC 3000 Australia.

[c] Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia.

[d] Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia.

Corresponding Authors: <u>Lisa.Martin@monash.edu</u>, <u>San.Thang@monash.edu</u>



**Figure S1.** <sup>1</sup>H NMR spectrum of *N*-*n*-butyl maleimide monomer. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ (ppm) 0.93 (t, 3H, J =7.4 Hz), 1.33 (m, 2H, J =7.6 Hz), 1.58 (m, 2H, J =7.6 Hz), 3.53 (t, 2H, J =7.4 Hz), 6.70 (s, 2H).



**Figure S2.** <sup>1</sup>H NMR spectrum of *N-iso*-butyl maleimide monomer. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ(ppm) 0.90 (d, 6H, J = 6.4 Hz), 2.03 (m, 1H, J = 6.4, 7.6 Hz), 3.36 (d, 2H, J = 7.6 Hz), 6.70 (s, 2H).



**Figure S3.** <sup>1</sup>H NMR spectra validating the quaternisation process converting **(A)** poly(4-vinyl pyridine-*co-N*-methylmaleimide) into **(B)** poly(*N*-methyl-4-vinyl pyridinium iodide-*co*-N-methylmaleimide).



**Figure S4.** <sup>1</sup>H NMR spectra validating the quaternisation process converting **(A)** poly(4-vinyl pyridine-*co-N*-ethylmaleimide) into **(B)** poly(*N*-methyl-4-vinyl pyridinium iodide-*co-N*-ethylmaleimide).



**Figure S5.** <sup>1</sup>H NMR spectra validating the quaternisation process converting **(A)** poly(4-vinyl pyridine-*co-N-n*-propylmaleimide) into **(B)** poly(*N*-methyl-4-vinyl pyridinium iodide-*co-N-n*-propylmaleimide).



**Figure S6.** <sup>1</sup>H NMR spectra validating the quaternisation process converting **(A)** poly(4-vinyl pyridine-*co-N-iso*-butylmaleimide) into **(B)** poly(*N*-methyl-4-vinyl pyridinium iodide-*co-N-iso*-butylmaleimide).



**Figure S7.** <sup>1</sup>H NMR spectra validating the quaternisation process converting **(A)** poly(4-vinyl pyridine-*co-N-n*-butylmaleimide) into **(B)** poly(*N*-methyl-4-vinyl pyridinium iodide-*co-N-n*-butylmaleimide).



**Figure S8.** Average zeta potential measurements for 0.625 mM poly(MVP-*co*-MM) (MM), poly(MVP-*co*-EtM) (EtM), poly(MVP-*co*-PM) (PM) and poly(MVP-*co*-BM) (BM) dissolved in Milli-Q<sup>®</sup> water. Error bars signify the mean standard deviation of the zeta potential distribution function.



**Figure S9.** Fitted autocorrelation function for DLS measurement of poly(MVP-*co*-BM) added to DMPC LUVs at 0.1:1 polymer:lipid



**Figure S10.** Fitted autocorrelation function for DLS measurement of poly(MVP-*co*-BM) added to DMPC LUVs at 0.2:1 polymer:lipid.



**Figure S11.** Fitted autocorrelation function for DLS measurement of poly(MVP-*co*-IBM) added to DMPC LUVs at 0.1:1 polymer:lipid.



**Figure S12.** Fitted autocorrelation function for DLS measurement of poly(MVP-*co*-IBM) added to DMPC LUVs at 0.2:1 polymer:lipid.



**Figure S13.** Fitted autocorrelation function for DLS measurement of poly(MVP-*co*-PM) added to DMPC LUVs at 0.1:1 polymer:lipid.



**Figure S14.** Fitted autocorrelation function for DLS measurement of poly(MVP-*co*-PM) added to DMPC LUVs at 0.2:1 polymer:lipid.



**Figure S15.** TEM derived histograms (constructed using imageJ analysis of at least 100 particles across two different axes) and accompanying images for poly(MVP-*co*-BM) added to DMPC LUVs in **(A)** 0.2:1 polymer:lipid and **(B)** 0.1:1 polymer:lipid ratios.



**Figure S16.** TEM derived histograms (constructed using imageJ analysis of at least 100 particles across two different axes) and accompanying images for poly(MVP-*co*-IBM) added to DMPC LUVs in **(A)** 0.2:1 polymer:lipid and (B) 0.1:1 polymer:lipid ratios.



**Figure S17. (A)** TEM derived histogram (constructed using imageJ analysis of at least 100 particles across two different axes) and accompanying images for poly(MVP-*co*-PM) added to DMPC LUVs in a 0.2:1 polymer:lipid ratio and **(B)** TEM image of poly(MVP-*co*-PM) added to DMPC LUVs in a 0.1:1 polymer:lipid ratio.



**Figure S18.** Comparison between TEM image of poly(MVP-*co*-IBM) added to DMPC 0.1:1 polymer: lipid at **(A)** 0 degrees sample stage  $\alpha$ -tilt and at **(B)** 50 degrees sample stage  $\alpha$ -tilt. The same particle has been measured along the horizontal axis as 24.23 nm at 0 degrees  $\alpha$ -tilt and 10.88 nm at 50 degrees  $\alpha$ -tilt.



**Figure S19.** SAXS I(q) versus q plots for **(A)** diblock SMA (D10) and **(B)** poly(MVP-*co*-BM) polymer only controls with a polymer concentration of 1.1 mM in aqueous buffer.

![](_page_11_Figure_2.jpeg)

**Figure S20.** P(r) functions generated from SAXS of **(A)** diblock SMA (D10) and **(B)** poly(MVP*co*-BM) polymer only controls at a concentration of 1.1 mM polymer. Zeta average diameter (Z-Ave) was collected from DLS, radius of gyration (Rg) was extracted from Guinier analysis of SAXS data and Dmax was given by the P(r) function intercept.

![](_page_12_Figure_0.jpeg)

**Figure S21.** P(r) functions generated from SAXS of **(A)** diblock SMA (D10) added to DMPC LUVs (0.2:1 polymer to DMPC) at DMPC concentration of 5.6mM and polymer concentration of 1.1 mM (C1) and **(B)** poly(MVP-*co*-BM) added to DMPC LUVs (0.2:1 polymer to DMPC) at C1. Zeta average diameter (Z-Ave) was collected from DLS, radius of gyration (Rg) was extracted from Guinear analysis of SAXS data and Dmax was given by the P(r) function intercept.

![](_page_12_Figure_2.jpeg)

**Figure S22.** Raw DSC thermograms for both heating and cooling cycles showing the heat rate ( $\mu$ J/s) of HS PBS buffer, 7.14 mM DMPC initially in the form of LUVs and upon incubation with a 0.2 molar fraction of poly(MVP-*co*-BM) polymer to form 13.7 nm and with a 0.1 molar fraction of poly(MVP-*co*-BM) to form 17.6 nm nanodiscs.

![](_page_13_Figure_0.jpeg)

**Figure S23.** Normalised dye-release assay graphs measuring % dye-release over time from CF dye-loaded POPC LUVs after an initial polymer addition (across a concentration range from 0.0067  $\mu$ M to 0.067  $\mu$ M) of **(A)** poly(MVP-*co*-MM), **(B)** poly(MVP-*co*-EtM), **(C)** poly(MVP-*co*-PM), **(D)** poly(MVP-*co*-IBM) and **(E)** poly(MVP-*co*-BM) followed by a successive Triton X-100 addition to lyse any intact LUVs, thus indicating 100% dye-release.

![](_page_13_Figure_2.jpeg)

**Figure S24.** Normalised dye-release assay graphs measuring % dye-release over time from CF dye-loaded POPC:POPG (1:1) LUVs after an initial polymer addition (across a concentration range from 0.0067 μM to 0.067 μM) of **(A)** poly(MVP-*co*-MM), **(B)** poly(MVP-*co*-EtM), **(C)** poly(MVP-*co*-PM), **(D)** poly(MVP-*co*-IBM) and **(E)** poly(MVP-*co*-BM) followed by a successive Triton X-100 addition to lyse any intact LUVs thus indicating 100% dye-release.

![](_page_14_Figure_0.jpeg)

**Figure S25.** Normalised dye-release assay graphs measuring % dye-release over time from CF dye-loaded POPC:POPG (4:1) LUVs after an initial polymer addition (across a concentration range from 0.0067 μM to 0.067 μM) of **(A)** poly(MVP-*co*-MM), **(B)** poly(MVP-*co*-EtM), **(C)** poly(MVP-*co*-PM), **(D)** poly(MVP-*co*-IBM) and **(E)** poly(MVP-*co*-BM) followed by a successive Triton X-100 addition to lyse any intact LUVs thus indicating 100% dye-release.

![](_page_14_Figure_2.jpeg)

**Figure S26.** Normalised dye-release assay graphs measuring % dye-release over time from CF dye-loaded POPE:POPG:CL (15:4:1) LUVs after an initial polymer addition (across a concentration range from 0.0067  $\mu$ M to 0.067  $\mu$ M) of **(A)** poly(MVP-*co*-MM), **(B)** poly(MVP-*co*-EtM), **(C)** poly(MVP-*co*-PM), **(D)** poly(MVP-*co*-IBM) and **(E)** poly(MVP-*co*-BM) followed by a successive Triton X-100 addition to lyse any intact LUV s, thus indicating 100% dye-release.

![](_page_15_Figure_0.jpeg)

**Figure S27.** UV-vis absorption spectra of **(A)** poly(MVP-*co*-MM), **(B)** poly(MVP-*co*-EtM), **(C)** poly(MVP-*co*-PM), **(D)** poly(MVP-*co*-IBM), **(E)** poly(MVP-*co*-BM) in 1 x HEPES buffer.

![](_page_15_Picture_2.jpeg)

**Figure S28.** TEM images of **(A)** poly(MVP-*co*-MM), **(B)** poly(MVP-*co*-EtM) and **(C)** poly(MVP*co*-PM) added to POPC:POPG (1:1) LUVs in a 0.2:1 polymer:lipid ratio.

![](_page_16_Picture_0.jpeg)

**Figure S29.** TEM images of **(A)** poly(MVP-*co*-PM), **(B)** poly(MVP-*co*-IBM) and **(C)** poly(MVP*co*-BM) added to POPC:POPG (1:1) LUVs in a 0.2:1 polymer:lipid ratio.

![](_page_16_Figure_2.jpeg)

**Figure S30.** TEM images of **(A)** poly(MVP-*co*-PM), **(B)** poly(MVP-*co*-IBM) and **(C)** poly(MVP*co*-BM) added to POPC LUVs in a 0.2:1 polymer:lipid ratio.

![](_page_17_Figure_0.jpeg)

**Figure S31.** <sup>31</sup>P NMR spectra with accompanyingTEM images for comparison of **(A)** poly(MVP-*co*-PM) and **(B)** poly(MVP-*co*-IBM) added to POPC:POPG (1:1) LUVs in a 0.2:1 polymer to lipid ratio and **(C)** poly(MVP-*co*-BM) and **(D)** poly(MVP-*co*-IBM) added to POPC LUVs in a 0.2:1 polymer:lipid ratio. Relative <sup>31</sup>P integration was calculated as a ratio between the area under peaks assigned to phosphate lipid headgroups in nanodiscs ( $\delta \sim 0.2$  ppm for POPG and  $\delta \sim -1.0$  ppm for POPC) and the H<sub>3</sub>PO<sub>4</sub> external standard peak ( $\delta \sim 0$  ppm). NMR Data was multiplied by line broadening factor 5 (Lb = 5.00) before Fourier transformation.

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

5 mg of polymer loaded

В

![](_page_17_Picture_6.jpeg)

2.5 mg and 5 mg of polymer loaded

С

![](_page_17_Picture_9.jpeg)

2.5 mg and 5 mg of polymer loaded

**Figure S32.** Disk diffusion assays of poly(MVP-*co*-MM) (1.), poly(MVP-*co*-EtM) (2.), poly(MVP-*co*-PM) (3.) and poly(MVP-*co*-BM) (4.) using 2.5 (indicated by 'd') or 5 mg of polymer loaded onto disks which were placed on agar plates incolucated with **(A)** *S. aureus* ATCC 29213 or **(B-C)** *A. baumannii* ATCC 29213. Positive control disks containing 10 μg colistin (c.) and negative control disks containing milliQ (mQ.) water are labelled.

| Sample                                   | polymer:lipid | TEM mean<br>diameter<br>(nm) | DLS H.D.<br>(nm) | DLS peak #<br>1 diameter<br>(int.) | DLS peak #<br>1 diameter<br>(vol.) | DLS %<br>PDI |
|------------------------------------------|---------------|------------------------------|------------------|------------------------------------|------------------------------------|--------------|
| Poly(MVP-co-BM) + DMPC                   | 0.1:1         | 18.9                         | 17.2             | 18.9                               | 13.9                               | 21.6         |
| LUVs                                     | 0.2:1         | 14.1                         | 23.0             | 12.5                               | 10.1                               | 20.0         |
| Poly(MVP <i>-co</i> -IBM) + DMPC<br>LUVs | 0.1:1         | 34.7                         | 42.0             | 31.9                               | 21.7                               | 18.3         |
|                                          | 0.2:1         | 10.5                         | 26.6             | 22.1                               | 15.3                               | 21.9         |
| Poly(MVP <i>-co</i> -PM) + DMPC<br>LUVs  | 0.1:1         | -                            | 163.2            | 33.8                               | 23.2                               | 20.7         |
|                                          | 0.2:1         | 14.5                         | 37.6             | 47.1                               | 28.9                               | 23.4         |

**Table S1.** TEM and DLS particle parameter summary for cationic polymers poly(MVP-*co*-BM), poly(MVP-*co*-IBM) and poly(MVP-*co*-PM) added to DMPC LUVs in 0.1:1 and 0.2:1 polymer:lipid molar ratios. Parameters shown are mean particle diameter (nm) calculated from TEM image analysis, DLS hydrodynamic diameter (H.D.) (nm), smallest particle fraction (peak # 1) diameter (nm) calculated from DLS intensity and volume weighted size frequency distributions and DLS percentage polydispersity index (% PDI).

| MIC (µg/mL)              |                          |                           |                          |                          |  |  |  |  |
|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--|--|--|--|
| Strain ID                | Poly(MVP- <i>co</i> -MM) | Poly(MVP- <i>co</i> -EtM) | Poly(MVP- <i>co</i> -PM) | Poly(MVP- <i>co</i> -BM) |  |  |  |  |
| P. aeruginosa ATCC 27853 | >1024                    | >1024                     | >1024                    | >1024                    |  |  |  |  |
| A. baumannii ATCC 17978  | >1024                    | >1024                     | 1024                     | 256                      |  |  |  |  |
| S. aureus ATCC 29213     | >1024                    | >1024                     | 1024                     | 256                      |  |  |  |  |

**Table S2.** Minimal inhibitory concentrations (MIC) for poly(MVP-*co*-MM), poly(MVP-*co*-EtM), poly(MVP-*co*-PM) and poly(MVP-*co*-BM) polymers tested against *P. aeruginosa* ATCC 27853, *A. baumannii* ATCC 17978 and *S. aureus* ATCC 29213.