Acid-sensitive stable polymeric micelle-based oxidative stress nanoamplifier as immunostimulating anticancer nanomedicine

Gayoung Kwon^a, Jinsu Baek^b, Nuri Kim^a, Soonyoung Kwon^a, Nanhee Song^a, Seong-

Cheol Park^c, Byeong-Su Kim^b, Dongwon Lee ^{a,d,*}

^a Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea

^b Department of Chemistry, Yonsei University, Seoul, 03722, Korea

^c Department of Polymer Engineering, Sunchon National University, Chonnam, 57922, Korea

^d Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea

Figure S1. A synthetic route of OSamp.

Figure S2. 1 H NMR spectrum of compound 1.

Figure S3. ¹H NMR spectrum of compound **2**.

Figure S4. ¹H NMR spectrum of compound **3**.

Figure S5. ¹H NMR spectrum of OSamp.

Figure S6. A synthetic route of PEG-PCHGE and its NMR spectrum.

Figure S7. Chemical structure of DSPE-PEG-RGD.

Figure S8. Chemical structure of PEG-PCHGE and acid-triggered degradation.

Figure S9. Fluorescence images of tumor tissues stained with DAPI and TUNEL.

Figure S10. Expression of TNF- α in tumor tissues. (a) Fluorescence images of tumor tissues stained with TNF- α antibody. (b) Quantification of TNF- α expressed in tumor tissues. **p<0.01, Values are presented as the mean ± SD (n=3).

Figure S11. Quantification of the level of (a) CRT and (b) HMGB1 in tumor tissues. ***p<0.001. Values are presented as the mean \pm SD (n=3).