Electronic Supplementary Information for

Fe-organic framework/arginine-glycine-aspartate peptide modified sensor toward electrochemically detecting nitric oxide released from living cells

Tingting Zhao, ‡a Ting Shu, ‡a Jinrong Lang, ‡a Ziyu Cui, ‡a Ping Li, ‡a and Shi Wang* ‡a,b

‡a School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China.
§b Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, P. R. China
† These authors contributed equally to this work.

Fig. S1 Image of the SPE, PDMS chamber (including plastic interlayer), and magnetic rotor.
Fig. S2 (A) TEM image of Fe-BTC. (B) The size distribution histogram of Fe-BTC.

Fig. S3 (A) The CV curves at different scan rates within 0.25–0.35 V of Fe-BTC/SPE modified with 0.1 mg mL$^{-1}$ Fe-BTC (a), Fe-BTC/RGD/SPE modified with 0.1 mg mL$^{-1}$ Fe-BTC and 0.025 mg mL$^{-1}$ RGD (b), and the corresponding Cdl values (c). (B) The EIS spectrum of Fe-BTC/SPE, RGD/SPE, and Fe-BTC/RGD/SPE.
Fig. S4 Interference testing of Fe-BTC/RGD/SPE. Results are presented as the mean ± SD (error bar) of triplicate experiments.

Fig. S5 Stability study of Fe-BTC/RGD/SPE toward NO. Results are presented as the mean ± SD (error bar) of triplicate experiments.