Biomaterials Science

SUPPLEMENTAL MATERIAL

Cartilage regeneration using transforming growth factor

beta-3-loaded injectable crosslinked hyaluronic acid

hydrogel

Ju Hwa Lee, Pil Yun Kim, Yun Chang Pyun, Jonggyu Park, Tae Woong Kang, Jin Sol Seo, Dae Hoon Lee, Gilson Khang*

Supplemental Table: 2

Supplemental Schemes: 5

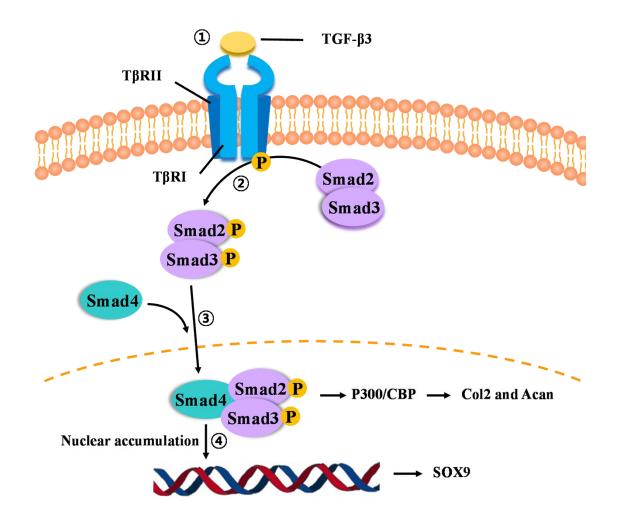
Supplemental Figures: 3

Supplemental Tables

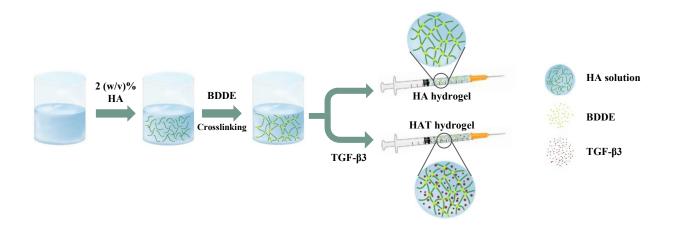
Experimental group	Defect model	Transplantation materials
Control (No-defect)	_	_
Sham control (Only defect)	Chondral defect	_
НА	(circular shape, diameter: 4	HA hydrogel 100 μL
НАТ	mm, depth: 2 mm)	HAT hydrogel 100 μL

Supplemental Table 1. *In vivo* experimental groups, defect models, and transplantation material used for evaluating cartilage regeneration. HA, hyaluronic acid; HAT, hyaluronic acid loaded with transforming growth factor-beta 3.

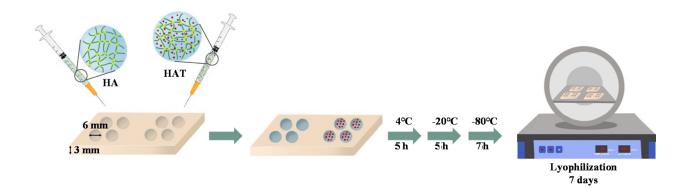
(a)

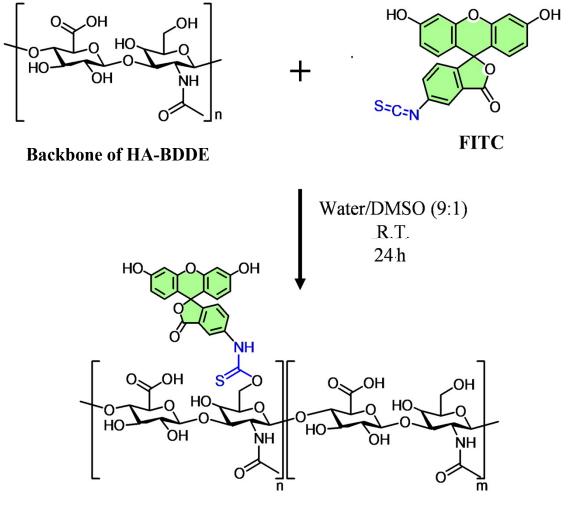

Defect model group	Defect condition	
Chondral defect	Circular shape, diameter: 4 mm, depth: 2 mm	
Osteochondral defect	Circular shape, diameter: 4 mm, depth: 2 mm + microfracture technique (circular shape, diameter: 1 mm, depth: 1 mm)	

(b)

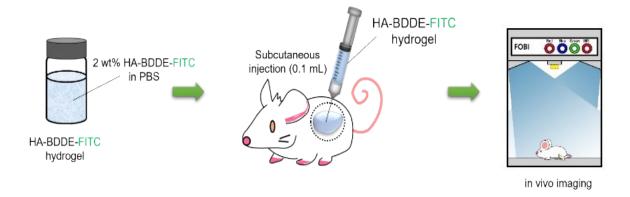

Experimental group	Defect model	Transplantation materials	Induction materials
Control (No-defect)		_	—
Sham control (Only defect)	Chondral	_	_
НА	Chondral		—
HAB	Osteochondral	ΗΑ 100 μL	BMSCs
HAT	Chondral	IIAT 100I	_
НАТВ	Osteochondral	ΗΑΤ 100 μL	BMSCs

Supplemental Table 2. (a) *In vivo* defect model group and (b) experimental groups for evaluation of preclinical conditions to regenerate cartilage. HA, hyaluronic acid; HAT, hyaluronic acid loaded with transforming growth factor-beta 3; HAB, bone marrow mesenchymal stem cell induction and HA transplantation; HATB, bone marrow mesenchymal stem cell induction and HAT transplantation.

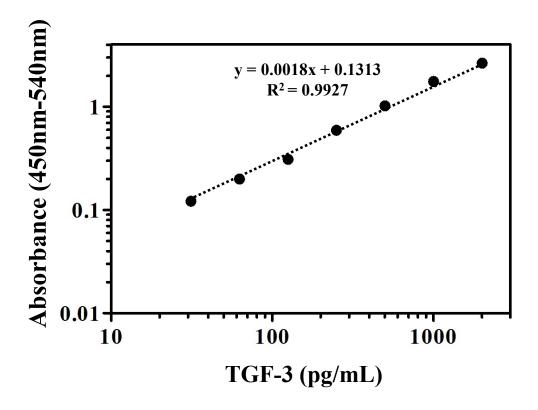

Supplemental Schemes


Supplemental Scheme 1. Signaling pathways and proteins involved in chondrogenic differentiation of mesenchymal stem cells through transforming growth factor-beta 3 (TGF- β 3).

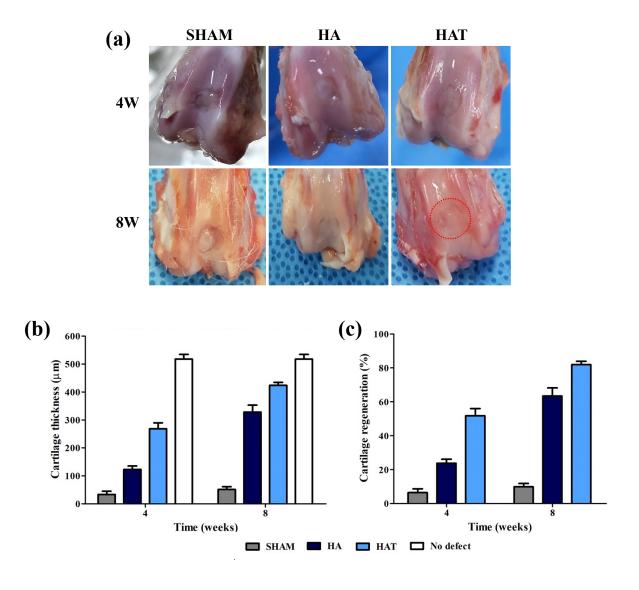
Supplemental Scheme 2. Schematic representation of the method used to prepare hyaluronic acid (HA) and HA gel-loaded TGF- β 3 (HAT) gels. BDDE, 1,4-butanediol diglycidyl ether; TGF- β 3, transforming growth factor-beta 3.



Supplemental Scheme 3. Preparation method of lyophilized hyaluronic acid (HA) and HA gelloaded TGF- β 3 (HAT) gel for SEM and sol fraction analysis. SEM, scanning electron microscope; TGF- β 3, transforming growth factor-beta 3.


HA-BDDE-FITC

Supplemental Scheme 4. The procedure for synthesizing isothiocyanate conjugated hyaluronic acid (HA) gel. BDDE, 1,4-butanediol diglycidyl ether.



Supplemental Scheme 5. Schematic diagram illustrating the *in vivo* biodegradability assessment. BDDE, 1,4-butanediol diglycidyl ether; HA, hyaluronic acid; PBS, phosphate-buffered saline

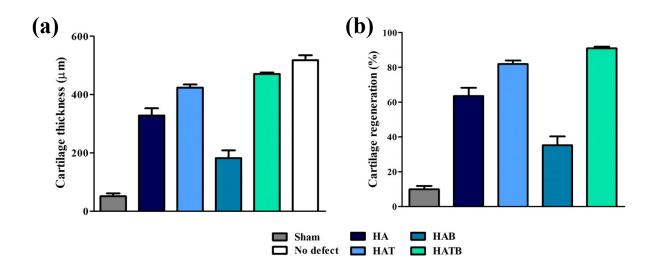

Supplemental Figures

Fig. S1. Standard curve of TGF- β 3 standard solution for the release profile analysis of TGF- β 3 loaded into HA hydrogel. HA, hyaluronic acid; TGF- β 3, transforming growth factor-beta 3.

Fig. S2. (a) Macroscopic observation of cartilage defects in a rabbit model at 4 and 8 weeks posttransplantation. Graph showing (b) the thickness of cartilage from the subchondral bone to the surface of the cartilage and (c) the percentage of regenerated cartilage. HA, hyaluronic acid; HAT, hyaluronic acid loaded with transforming growth factor-beta 3.

Fig. S3. Graph showing (a) the thickness of cartilage from the subchondral bone to the surface of the cartilage and (b) the percentage of regenerated cartilage. HA, hyaluronic acid; HAT, hyaluronic acid loaded with transforming growth factor-beta 3; HAB, bone marrow mesenchymal stem cell induction and HA transplantation; HATB, bone marrow mesenchymal stem cell induction and HAT transplantation.