Supplementary Materials for

Nanodrug Regulates ROS homeostasis via enhancing fatty acid oxidation and inhibiting autophagy to overcome tumor drug resistance

HaiYang Wang^{a,†}, Minzhao Lin^{a,†}, Gengjia Chen^a, Zecong Xiao^{b,*} and Xintao Shuai _{a,b,*}

*Corresponding authors. E-mail: shuaixt@mail.sysu.edu.cn (X. T. Shuai);

xiao92826@hotmail.com (Z.C. Xiao)

Figure S1. CQ UV Standard Curve

Figure S2. The size of nanodrug in PBS or PBS with 10% FBS (mean \pm SD; n = 3)

Figure S3. The cell viability of 4T1 cells receiving different treatments (mean \pm SD; n = 3, ***p < 0.001).

Figure S4. The intracellular ROS levels in 4T1 cells after treatment with nanodrugs were detected with DCFH-DA (scale bar = $10 \ \mu m$).

Figure S5. Quantitative analysis of the intracellular ROS levels in 4T1 cells after treatment with nanodrugs by flow cytometry.

Figure S6. Changes of body weight during various treatments (mean \pm SD; n = 3).