Supporting Information

Enhanced ROS scavenging and tissue adhesive abilities

in injectable hydrogels by protein modification with

oligoethyleneimine

Debabrata Palai¹, Miho Ohta¹, Iga Cetnar ^{1,2}, Tetsushi Taguchi^{1*}, Akihiro Nishiguchi^{1*}

 ¹ Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
² Faculty of Materials Science and Engineering, Warsaw University of Technology, Al. Waszyngtona 4/8 Warsaw, Poland

*Corresponding author: <u>nishiguchi.akihiro@nims.go.jp</u>, taguchi.tetsushi@nims.go.jp

Figure S1. (a) Fluorescence microscopic images of live/dead assay of L929 cells. Each hydrogel (8 mm disc) was immersed in culture media for 24 h at 37 °C. The supernatants were collected and kept at -80 °C until the use. Cells were exposed to the supernatants for 24 h. (b) Cell viability of L929 cells exposed to G and GbOEI-2 hydrogels. (c) Phase contrast images of L929 cells in wound healing assay. A scratch was formed to confluently cultured L929 cells on 6 well plates using a pipettor. The medium or supernatant were added to the cells and cultured for 24 h.

Adhesive	Biocompatibility	Adhesive strength	ROS scavenging ability	Ref
		(kPa)		
Fibrin glue	yes	~2	no	Nishiguchi, A. et al., ACS Appl Bio Mater 3, 9093– 9100 (2020).
Duraseal	yes	~15	no	Komatsu, H. et al.,Macromol. Biosci. 23, e2300097 (2023)
4arm-PEG crosslinked gel	yes	13	no	Henise, J. et al., <i>J.</i> Biomed. Mater. Res. B Appl. Biomater. 105, 1602–1611 (2017)
α-linolenic acid based gel	yes	6	yes	Mizuno, Y. et al., ACS Appl. Bio Mater. 3, 6204– 6213 (2020)
GbOEI-2	yes	20	yes	-

Table S1. Comparison of adhesive strength, anti-inflammatory properties of different tissue adhesives.

Video S1. In vivo tissue adhesive test of GbOEI hydrogel using small intestine of porcine.