Enhancing Antioxidant Properties of CeO₂ Nanoparticles with Nd³⁺

Doping: Structural, Biological, and Machine Learning Insights

Oscar Ceballos-Sanchez^a, Diego E. Navarro-López^b, Jorge L. Mejía-Méndez^{c*}, Gildardo Sanchez-Ante^b, Vicente Rodríguez-González^d, Angélica Lizeth Sánchez-López^b, Araceli Sanchez-Martinez^{*a}, Sergio M. Duron-Torres^e, Karla Juarez-Moreno^{*f}, Naveen Tiwari^{*g}, Edgar R. López-Mena^{*b}

^aUniversidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan, Jalisco, 45157, México.

^bTecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, México.

^cDepartamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, 72810 Cholula, Puebla, México.

^dDivisión de Materiales Avanzados, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P., México.

^eUnidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Carretera Zacatecas, Guadalajara Km 6, Ejido La Escondida, 98160, Zacatecas, México.

^fCentro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, QRO 76230, México

^gCentro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), C/ Jenaro de la Fuente s/n, Campus Vida, Universidad de de Santiago de Compostela, 15782 Santiago de Compostela, España.

Sample	d _{hkl} (nm)	2(0)	FWHM	<i>D</i> (nm)	<i>a</i> (nm)
CN0	0.310	28.67	0.300	27.33	0.5261
CN1	0.311	28.66	0.313	26.20	0.5263
CN5	0.312	28.62	0.343	23.90	0.5270
CN10	0.312	28.58	0.445	18.42	0.5277

Table 1. Structural parameters of the prepared NPs.

Figure S1. EDS spectrum of Nd-CeO₂ nanoparticles with different amounts of Nd.

Figure S2. a) N_2 -adsorption-desorption isotherm plots, b) pore size distribution of Nd-doped CeO₂ nanoparticles.

Table 2. S_{BET} , pore volume, and pore radius of prepared CeO₂-NPs.

Sample	$S_{BET}(m^{2}/g)$	Pore volume (cc/g)	Pore radius (Å)
CN0	49.240	0.106	35.824
CN1	50.004	0.157	85.610
CN5	83.815	0.233	16.057
CN10	73.258	0.208	66.815

Figure S3. a) TEM/HRTEM image, b) STEM-HAADF image (inset is the inverse FFT), and c) EDS elemental mapping of CeO₂.

TEM/HRTEM image of CeO₂ (**Figure S3**) depicts that the nanoparticles are consistent with the observed morphology. 17.25 nm was determined to be the average particle size. The (fast-Fourier Transform) FFT and inverse FFT were utilized to analyze the interplanar distance (dhkl) of 0.31 nm, leading to the identification of the (111) plane, as seen in the HRTEM inset. The surface's HRTEM picture in HAADF-STEM mode is shown in **Figure S3b**. In relation to the (220) plane, the dhkl value is 0.19 nm. Cerium and oxygen are represented by a homogeneous distribution in **Figure S3c** spectrum picture and elemental mapping. It also displays a blend of elemental mapping.