Supporting Information

Transient imine as a directing group for the Pd-catalyzed anomeric C(*sp*³)–H arylation of 3-aminosugars

Juba Ghouilem,^a Sokna Bazzi,^a Nicolas Grimblat,^b Pascal Retailleau,^c Vincent Gandond,^b and Samir Messaoudi^a*

^a Universite Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France, Tel: + (33) 0146835887; E-mail: samir.messaoudi@universite-paris-saclay.fr

^b Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau France.

^c Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Universite Paris-Saclay, avenue de la terrasse, 91198 Gif-sur-Yvette, France

^d Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay cedex, France

Table of contents

General information	2
a)List of Substrates:	3
b) General procedure for C-H activation	4
c)General procedure CuAAc	4
d)Optimization of the reaction conditions with the model substrate 3a	5
e)Characterization of compounds:	7
f)DFT calculations	20
g)Crystallographic data collection, structure determination and refinement for 3a	25
h)NMR Spectra	29

General information

All reactions were carried out under an argon atmosphere in oven-dried glassware unless otherwise noted. All solvents and reagents were used as obtained from suppliers unless otherwise noted. Analytical TLC was performed using Merck silica gel F254 (230-400 mesh) plates and analyzed by UV light or by staining upon heating with vanillin solution (15 g of vanillin, 250 mL of EtOH, 2.5 mL conc. H₂SO₄). For silica gel chromatography, the flash chromatography technique was used, with Merck silica gel 60 (230- 400 mesh) or RediSep Rf Gold Silica Cartridges and p.a. grade solvents.

The ¹H, ¹³C and ¹⁹F NMR spectra were recorded in CDCl₃ or CD₃OD on Bruker Avance 200, 300 and 400 spectrometers. The chemical shifts of ¹H are reported in ppm relative to the solvent residual peak in CDCl₃ (δ 7.26) or in CD₃OD (δ 3.31) for ¹H NMR. For the ¹³C NMR spectra, the solvent signals of CDCl₃ (δ 77.16) and CD₃OD (δ 49.00) were used as the internal standards. IR spectra were recorded on a Tensor 27 FT-IR spectrometer. Optical rotations were obtained with a Polarimeter-MCP 100. High-resolution mass spectrometric data were measured using MicroMass LCT Premier Spectrometer.

a) List of Substrates:

All the experimental procedures are described in the reference¹

¹ J. Ghouilem, C. Tran, N. Grimblat, P. Retailleau, M. Alami, V. Gandon, S. Messaoudi. ACS Catal. 2021, 11, 1818

b) General procedure for C-H activation

A reaction tube was charged with starting material (1.0 equiv), Pd (OAc)₂ (10 mol%), TDG 1 (50 mol%), L7 (50 mol%), AgTFA (2.0 equiv), aryl iodide (3.0 equiv), H₂O (10 equiv), and HFIP 19:1 AcOH (0.1 M, relative to starting material). The reaction vessel was purged with argon and sealed, then placed in an oil bath (preheated at 90 °C) for 16h. The reaction mixture was then allowed to cool to rt and EtOAc 1: 1 MeOH (10 mL) was added. The resulting solution was filtered through a pad of Celite, eluting with further EtOAc (2 × 10 mL). The solvent was removed under reduced pressure, and the crude material dried over vacuum for 1h, then added Imidazole-1-sulfonyl Azide Hydrochloride (1.5 equiv), CuSO₄.5H₂O (2 mol%), K₂CO₃ (3 equiv) (in some cases Et₃N was used instead of K₂CO₃) and MeOH (0.2 M, relative to starting material), for 1h. the crude material was purified by flash column chromatography (0% grading to 4% AcOEt/Cyclohexane).

c) General procedure CuAAc²

1) To a stirred solution of Alkyne³ (1 eq) and azide (1.5 equiv.) in tert-butanol and water (2 :1) 0.1M, were added CuSO₄. 5H₂O (10 mol%) and sodium ascorbate (40 mol%). The reaction mixture was stirred at room temperature until TLC monitoring showed complete conversion of the starting material (48 h). The reaction mixture was evaporated to dryness, then dissolved in CH₂Cl₂ and was filtered, the filtrate was evaporated to dryness and purified by flash column chromatography (25% grading to 45% AcOEt/Cyclohexane).

2) To a solution of 3-azido- (1 equiv) and CuI (0.5 equiv) in MeCN (0.1M)⁴ were the corresponding acetylene derivative (2 equiv) and diisopropylethylamine (DIPEA) (1.2 equiv) added. The mixture was stirred (t) h at 50 °C before quenching with sat. aq. NH₄Cl followed by evaporation of the solvent. The residue was extracted twice with EtOAc and the organic phases were washed with brine, dried, evaporated and purified by flash column chromatography.

² S. M. Park, Y. Shen and B. H. Kim, Org. Biomol. Chem., 2007, 5, 610.

³ a) D. H. Hilko, L. F. Bornaghi, S.-A. Poulsen *J. Org. Chem.* 2018, *83*, 11944; b) G. T. Crisp and B. L. Flynn *J. Org. Chem.* 1993, *58*, 6614.

⁴ K. Peterson, R. Kumar, O. Stenström, P. Verma, P. R. Verma, M. Hakansson, [°]B. Kahl-Knutsson, F. Zetterberg, H. Leffler, M. Akke, D. T. Logan, U. J. Nilsson, *J. Med. Chem.* 2018, *61*, 3, 1164.

d) Optimization of the reaction conditions with the model substrate 3a

Temperature screening

entry	Conditions	yield
1	110°C	31%
2	90°C	32%
3	80°C	29%
4	70°C	0%

Oxidant screening

entry	Conditions	yield
1	AgTFA	51%
2	AgOMs	0%
3	AgOAc	0%
4	Ag ₂ O	0%
5	NFSI OTf	0%
6	NFSI BF4	0%
7	$K_2S_2O_8$	0%
8	Cu(TFA)₂	18%

Solvant screening

Catalyst screening

entry	Conditions	yield
1	Pd(OAc)₂ 10 mol%	51%
2	Pd(OAc)₂ 20 mol%	35%
3	PdCl ₂ 10 mol%	25%
4	Pd(OAc) ₂ 7.5 mol% & Pd(TFA) ₂ 7.5 mol%	46%
5	Pd(PhCN) ₂ Cl ₂ 7,5 mol% & Pd(TFA) ₂ 7.5 mol%	32%
6	Pd(OAc) ₂ 7.5 mol% & Pd(PhCN) ₂ Cl ₂ 7.5 mol%	40%

LCMS Analysis of the [NH₂-3a] intermediate (No absorption at 254 nm wavelength)

e) Characterization of compounds:

¹H NMR (300 MHz, Chloroform-*d*) δ 6.10 (d, *J* = 5.1 Hz, 1H), 4.44 – 4.12 (m, 3H), 3.89 – 3.74 (m, 1H), 3.69 – 3.48 (m, 3H), 3.06 (s, 2H), 2.10 (s, 3H), 2.04 (s, 3H), 1.97 – 1.87 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 171.6, 75.2, 68.0, 64.0, 62.3, 48.4, 29.4, 23.5, 21.0. HRMS (ESI-TOF): m/z calculated for C₁₀H₁₇NO₅⁺[M+Na]⁺254.0999, found 254.1000.

¹H NMR (300 MHz, Methanol- d^4) δ 3.92 – 3.71 (m, 4H), 3.64 (d, J = 3.6 Hz, 3H), 3.46 (m, 6H), 3.36 (s, 3H), 2.06 – 1.90 (m, 2H). ¹³C NMR (75 MHz, MeOD) δ 75.1, 74.6, 72.8, 62.0, 59.5, 58.0, 47.8, 28.2. HRMS (ESI-TOF): m/z calculated for C₈H₁₈NO₃⁺ [M+H] ⁺ 176.1281, found 176.1281.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.34 (s, 5H), 4.67 (d, J = 11.5 Hz, 1H), 4.50 (d, J = 11.5 Hz, 1H), 4.37 – 4.27 (m, 1H), 4.27 – 4.16 (m, 2H), 3.92 – 3.80 (m, 1H), 3.76 – 3.59 (m, 2H), 3.53 (dd, J = 9.5, 3.1 Hz, 1H), 2.02 (s, 3H), 1.87 – 1.72 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 176.2, 128.8, 128.5, 128.4, 128.3, 73.4, 73.1, 71.7, 64.3, 64.0, 63.6, 62.6, 62.5, 21.0. HRMS (ESI-TOF): m/z calculated for C₁₅H₂₂NO₄⁺[M+H] ⁺ 280.1543, found 280.1545.

¹H NMR (200 MHz, Chloroform-*d*) δ 7.36 – 7.23 (m, 10H), 4.52 (m, 4H), 3.96 – 3.44 (m, 7H), 2.17 (s, 2H), 2.02 – 1.79 (m, 1H), 1.76 – 1.59 (m, 1H). ¹³C NMR (75 MHz, CDCl3) δ 138.3, 137.9, 128.5, 128.4, 128.1, 128.0, 127.7, 74.5, 73.7, 73.6, 71.5, 69.8, 61.7, 45.8, 30.7. HRMS (ESI-TOF): m/z calculated for C₂₀H₂₅NO₃⁺[M+H]⁺ 328.1907, found 328.1912.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.86 – 7.71 (m, 4H), 7.53 – 7.40 (m, 3H), 7.25 – 7.10 (m, 5H), 4.85 – 4.62 (m, 2H), 4.56 (d, *J* = 11.5 Hz, 1H), 4.40 (d, *J* = 11.5 Hz, 1H), 3.95 – 3.49 (m, 7H), 1.86 (s, 2H), 1.71 – 1.59 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 128.5, 128.3, 128.1, 128.0, 128.0, 127.8, 126.9, 126.2, 126.1, 126.0, 126.0, 74.3, 73.8, 73.7, 71.6, 69.8, 61.7, 46.0, 30.6. HRMS (ESI-TOF): m/z calculated for C₂₄H₂₇NO₃⁺[M+H]⁺378.2064, found 378.2069.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.32 (s, 5H), 4.60 (d, *J* = 11.3 Hz, 1H), 4.46 (d, *J* = 11.4 Hz, 1H), 4.37 (d, *J* = 11.7 Hz, 1H), 4.19 (dd, *J* = 11.6, 4.7 Hz, 1H), 3.96 – 3.74 (m, 2H), 3.73 – 3.55 (m, 2H), 3.43 (d, *J* = 7.6 Hz, 1H), 1.92 – 1.60 (m, 4H), 1.20 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 137.7, 128.7, 128.1, 73.6, 72.3, 71.3, 64.1, 61.5, 27.4. HRMS (ESI-TOF): m/z calculated for C₁₈H₂₇NO₄⁺ [M+H] ⁺ 322.2013, found 322.2019.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.36 – 7.23 (m, 10H), 4.60 – 4.43 (m, 4H), 4.14 – 4.00 (m, 1H), 3.81 – 3.64 (m, 3H), 3.54 (dd, *J* = 10.1, 4.8 Hz, 1H), 3.26 – 3.12 (m, 2H), 2.15 – 2.05 (m, 1H), 1.65 (s, 2H), 1.43 – 1.31 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 138.3, 138.2, 128.5, 128.1, 127.9, 127.7, 78.2, 73.5, 73.2, 72.5, 68.5, 61.3, 46.5, 30.2. HRMS (ESI-TOF): m/z calculated for C₂₀H₂₅NO₃⁺ [M+H] ⁺ 328.1907, found 328.1910.

Compound 3a was obtained (25 mg, 51%) as a yellow oil. $[\alpha]^{25}_{D}$ = -16.8 ° (c 0,5 EtOH). IR (neat, cm⁻¹): 2924, 2854, 2096, 1454, 1263, 1091, 1049.¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, *J* = 6.7 Hz, 2H), 7.43 – 7.29 (m, 10H), 7.20 (d, *J* = 7.9 Hz, 2H), 4.80 (dd, *J* = 10.7, 3.0 Hz, 1H), 4.75 (d, *J* = 4.7 Hz, 1H), 4.58 (s, 2H), 4.40 – 4.34 (m, 1H), 3.84 (m, 1H), 3.78 – 3.70 (m, 3H), 2.45 – 2.34 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 138.1, 137.9, 137.6, 129.2, 128.7, 128.5, 128.1, 128.0, 127.9, 127.8, 126.1, 74.7, 74.1, 73.6, 73.4, 72.1, 69.6, 56.8, 32.7, 21.3. HRMS (ESI-TOF): m/z calculated for C₂₇H₂₉N₃O₃⁺ [M+Na]⁺ 466.2101, found 466.2106.

Compound 3b was obtained (15 mg, 32%) as a yellow oil. $[\alpha]^{25}_{D} = -7.8 \degree$ (c 0,5 EtOH). IR (neat, cm⁻¹): 2924, 2854, 2098, 1456, 1261, 1087, 1047.¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.09 (m, 14H), 4.78 – 4.72 (m, 1H), 4.71 (d, *J* = 5.0 Hz, 2H), 4.53 (d, *J* = 1.7 Hz, 2H), 4.34 (td, *J* = 5.4, 2.3 Hz, 1H), 3.80 (t, *J* = 2.8 Hz, 1H), 3.75 – 3.65 (m, 3H), 2.41 – 2.31 (m, 4H), 1.95 (dt, *J* = 12.7, 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 138.3, 138.1, 137.9, 128.7, 128.5, 128.5, 128.1, 128.0, 127.9, 127.8, 126.8, 123.3, 74.7, 74.2, 73.6, 73.6, 72.2, 69.6, 56.7, 32.7, 29.9, 21.6. HRMS (ESI-TOF): m/z calculated for C₂₇H₂₉N₃O₃⁺ [M+NH₄] ⁺ 461.2547, found 461.2560.

Compound 3c was obtained (19 mg, 40%) as a yellow oil. $[\alpha]^{25}_{D} = -15.33 \circ (c 0,75 \text{ EtOH})$. IR (neat, cm⁻¹): 2970, 2926, 2096, 1454, 1361, 1265, 1087, 1045.¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.44 (d, *J* = 7.0 Hz, 1H), 7.40 – 7.24 (m, 9H), 7.24 – 7.11 (m, 3H), 5.02 (dd, *J* = 11.3, 2.1 Hz, 1H), 4.72 (q, *J* = 11.9 Hz, 2H), 4.52 (s, 2H), 4.37 (td, *J* = 5.3, 1.5 Hz, 1H), 3.81 (d, *J* = 1.8 Hz, 1H), 3.78 – 3.65 (m, 3H), 2.42 – 2.27 (m, 4H), 1.94 – 1.85 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 138.1, 137.8, 134.8, 130.5, 128.7, 128.5, 128.1, 128.1, 127.9, 127.8, 127.8, 126.5, 126.1, 75.0, 74.8, 73.7, 72.2, 70.7, 70.2, 56.9, 31.2, 19.1. HRMS (ESI-TOF): m/z calculated for C₂₇H₂₉N₃O₃⁺ [M+Na] ⁺ 466.2101, found 466.2104.

Compound 3d was obtained (15.5 mg, 37%) as a yellow oil. $[\alpha]^{25}{}_{D}$ = -12.2 ° (c 0,5 CH₂Cl₂). IR (neat, cm⁻¹) : 2924, 2854, 2098, 1454, 1259, 1091, 1026.¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.27 (m, 11H), 7.18 – 7.04 (m, 3H), 4.74 (d, *J* = 3.2 Hz, 1H), 4.70 (d, *J* = 5.8 Hz, 2H), 4.53 (s, 2H), 4.33 (td, *J* = 5.4, 2.2 Hz, 1H), 3.79 (t, *J* = 2.4 Hz, 1H), 3.72 – 3.66 (m, 3H), 2.42 – 2.31 (m, 1H), 2.25 (d, *J* = 7.2 Hz, 6H), 1.93 (dt, *J* = 12.6, 3.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 138.1, 137.9, 136.8, 136.2, 129.8, 128.7, 128.5, 128.1, 128.0, 127.9, 127.8, 127.4, 123.6, 74.2, 73.6, 72.1, 56.8, 32.7, 29.8, 19.9, 19.6. HRMS (ESI-TOF): m/z calculated for C₂₈H₃₅N₃O₃⁺ [M+NH₄] ⁺ 475.2704, found 475.2712.

Compound 3e was obtained (22 mg, 35%) as a yellow oil. $[\alpha]^{25}{}_{D} = -7 \circ (c \ 0,5 \ EtOH)$. IR (neat, cm⁻¹): 2926, 2856, 2096, 1496, 1454, 1261, 1089, 1045, 1026.¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.22 (m, 15H), 4.80 (dd, *J* = 10.6, 3.0 Hz, 1H), 4.71 (d, *J* = 4.1 Hz, 2H), 4.54 (d, *J* = 2.2 Hz, 2H), 4.39 – 4.29 (m, 1H), 3.80 (t, *J* = 2.9 Hz, 1H), 3.76 – 3.68 (m, 3H), 2.43 – 2.29 (m, 1H), 2.03 – 1.93 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 138.1, 137.9, 128.7, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 126.2, 74.8, 74.2, 73.6, 73.5, 72.2, 69.6, 69.6, 56.7, 32.7. HRMS (ESI-TOF): m/z calculated for C₂₆H₂₇N₃O₃⁺ [M+Na] ⁺ 452.1945, found 452.1946.

Compound 3f was obtained (23 mg, 45%) as a yellow oil. $[\alpha]^{25}_{D} = -7.7 \circ$ (c 1, CHCl3). IR (neat, cm⁻¹):2958, 2926, 2096, 1454, 1363, 1265, 1091. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.39 (m, 2H), 7.39 – 7.28 (m, 10H), 7.21 (d, *J* = 8.2 Hz, 2H), 4.76 (dd, *J* = 10.7, 2.9 Hz, 1H), 4.70 (d, *J* = 5.2 Hz, 2H), 4.53 (s, 2H), 4.33 (td, *J* = 5.4, 2.3 Hz, 1H), 3.85 – 3.78 (m, 1H), 3.75 – 3.63 (m, 3H), 2.94 – 2.85 (m, 1H), 2.44 – 2.31 (m, 1H), 1.99 – 1.92 (m, 1H), 1.25 (s, 3H), 1.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 139.0, 138.1, 137.9, 128.7, 128.5, 128.0, 128.0, 127.9, 127.8, 126.6, 126.2, 74.8, 74.2, 73.6, 73.5, 72.1, 69.6, 56.8, 34.0, 32.5, 24.1. HRMS (ESI-TOF): m/z calculated for C₂₉H₃₃N₃O₃⁺ [M+Na] ⁺ 494.2414, found 494.2418.

Compound 3g was obtained (20 mg, 38%) as a yellow oil. $[\alpha]^{25}_{D} = -0.9 \circ (c \ 1, CH_2Cl_2)$. IR (neat, cm⁻¹): 2958, 2926, 2096, 1456, 1361, 1219, 1089. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.16 (m, 14H), 4.81 (dd, *J* = 10.5, 3.0 Hz, 1H), 4.69 (d, *J* = 1.4 Hz, 2H), 4.62 – 4.55 (m, 1H), 4.53 (d, *J* = 2.9 Hz, 2H), 4.35 – 4.27 (m, 1H), 3.79 (t, *J* = 3.0 Hz, 1H), 3.76 – 3.70 (m, 1H), 3.68 (dd, *J* = 5.2, 2.5 Hz, 2H), 2.37 – 2.25 (m, 1H), 2.01 – 1.93 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 137.9, 137.8, 128.7, 128.6, 128.1, 128.0,

127.8, 127.6, 74.7, 73.7, 72.8, 72.3, 69.6, 56.6, 32.7. ¹⁹F NMR (188 MHz, CDCl₃) δ -57.9. HRMS (ESI-TOF): m/z calculated for C₂₇H₂₆F₃N₃O₄⁺ [M+Na]⁺ 536.1768, found 536.1777.

Compound 3h was obtained (12.5 mg, 22%) as a yellow oil. $[\alpha]^{25}_{D} = -25.2 \circ (c \ 0.5 \ CH_2Cl_2)$. IR (neat, cm⁻¹): 2926, 2856, 2098, 1718, 1490, 1454, 1261, 1087, 1026, 1014.¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.18 (m, 14H), 4.72 (dd, *J* = 10.3, 3.1 Hz, 1H), 4.64 (d, *J* = 1.5 Hz, 2H), 4.53 – 4.42 (m, 2H), 4.28 – 4.21 (m, 1H), 3.73 (t, *J* = 2.6 Hz, 1H), 3.71 – 3.64 (m, 1H), 3.62 (dd, *J* = 5.2, 1.8 Hz, 2H), 2.31 – 2.17 (m, 1H), 1.95 – 1.85 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 137.9, 137.8, 133.5, 128.7, 128.6, 128.1, 128.1, 128.0, 127.8, 127.5, 74.7, 74.1, 73.6, 72.8, 72.2, 69.6, 56.6, 32.7. HRMS (ESI-TOF): m/z calculated for C₂₆H₂₆ClN₃O₃⁺ [M+NH₄] ⁺ 481.2001, found 481.2001.

Compound 3i was obtained (10.5 mg, 18%) as a yellow oil. $[\alpha]^{25}{}_{D} = -8 \circ (c \ 0.5 \ CH_2 Cl_2)$. IR (neat, cm⁻¹): 2922, 2852, 2096, 1496, 1456, 1261, 1089, 1049, 1026.¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.29 (m, 14H), 4.76 (dd, *J* = 10.5, 3.0 Hz, 1H), 4.69 (d, *J* = 2.9 Hz, 2H), 4.66 – 4.59 (m, 1H), 4.58 – 4.49 (m, 2H), 4.34 – 4.27 (m, 1H), 3.82 – 3.76 (m, 1H), 3.75 – 3.70 (m, 1IIJH), 3.70 – 3.66 (m, 1H), 2.47 (s, 3H), 2.39 – 2.26 (m, 1H), 1.99 – 1.89 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 138.7, 138.2, 138.0, 138.0, 137.9, 137.7, 128.7, 128.6, 128.5, 128.5, 128.3, 128.1, 128.1, 128.0, 127.9, 127.8, 127.0, 126.7, 73.8, 73.6, 73.1, 72.2, 72.1, 69.6, 62.4, 56.7, 32.6, 29.8, 16.3. HRMS (ESI-TOF): m/z calculated for C₂₇H₂₉N₃O₃S⁺ [M+NH₄] ⁺ 493.2268, found 493.2275.

Compound 3j was obtained (19 mg, 33%) as a yellow oil. [α]²⁵_D = -46.13 ° (c 0,75 CH₂Cl₂). IR (neat, cm⁻): 2924, 2860, 2096, 1508, 1496, 1454, 1361, 1261, 1089, 1047, 1026.¹H NMR (400 MHz, Chloroform-

d) δ 7.89 – 7.78 (m, 4H), 7.57 – 7.41 (m, 5H), 7.40 – 7.29 (m, 10H), 4.96 (dd, *J* = 10.5, 3.0 Hz, 1H), 4.73 (d, *J* = 4.1 Hz, 2H), 4.56 (d, *J* = 3.5 Hz, 2H), 4.44 – 4.35(m, 1H), 3.87 – 3.65 (m, 4H), 2.52 –2.39 (m, 1H), 2.11 – 2.01 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 138.1, 137.9, 133.4, 133.2, 128.7, 128.6, 128.3, 128.2, 128.1, 128.0, 127.9, 127.9, 127.8, 126.2, 126.0, 124.9, 124.3, 74.8, 74.3, 73.6, 73.6, 72.2, 69.6, 56.8, 32.7. HRMS (ESI-TOF): m/z calculated for C₃₀H₂₉N₃O₃⁺ [M+Na] ⁺ 502.2101, found 502.2102.

Compound 3k was obtained (14 mg, 26%) as a yellow oil. $[\alpha]^{25}_{D} = -22.8 \degree$ (c 0,5 CH₂Cl₂). IR (neat, cm⁻¹): 2960, 2926, 2856, 2096, 1454, 1259, 1085, 1045, 1026.¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, *J* = 8.4 Hz, 1H), 7.86 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.80 (d, *J* = 8.2 Hz, 1H), 7.66 (dd, *J* = 7.2, 1.3 Hz, 1H), 7.51 – 7.46 (m, 3H), 7.44 – 7.30 (m, 10H), 5.53 (dd, *J* = 11.6, 2.5 Hz, 1H), 4.84 – 4.69 (m, 2H), 4.58 (s, 2H), 4.48 (td, *J* = 5.4, 1.6 Hz, 1H), 3.92 – 3.74 (m, 4H), 2.71 – 2.55 (m, 1H), 2.18 – 2.01 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.1, 137.8, 137.1, 134.1, 130.7, 129.0, 128.7, 128.7, 128.6, 128.1, 127.9, 127.9, 126.2, 125.6, 125.6, 124.1, 123.7, 75.2, 74.9, 73.8, 72.3, 71.7, 69.9, 56.8, 31.8. HRMS (ESI-TOF): m/z calculated for C₃₀H₂₉N₃O₃⁺ [M+NH₄] ⁺497.2547, found 497.2551.

Compound 3I was obtained (18 mg, 25%) as a yellow oil. $[\alpha]^{25}_{D} = -6^{\circ}$ (c 0,75 CH₂Cl₂). IR (neat, cm⁻¹): 2926, 2856, 2098, 1456, 1259, 1089, 1018.¹H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.40 (m, 2H), 7.38 – 7.27 (m, 10H), 7.16 (d, J = 8.0 Hz, 2H), 4.76 (dd, J = 11.0, 3.0 Hz, 1H), 4.70 (d, J = 5.2 Hz, 2H), 4.53 (s, 2H), 4.33 (dt, J = 5.2, 2.5 Hz, 1H), 3.79 (d, J = 2.9 Hz, 1H), 3.74 – 3.62 (m, 3H), 2.65 – 2.55 (m, 1H), 2.37 (q, J = 11.9 Hz, 1H), 1.95 (dt, J = 12.6, 3.3 Hz, 1H), 1.64 – 1.53 (m, 2H), 1.39 – 1.30 (m, 3H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl3) δ 142.7, 138.8, 138.1, 137.9, 128.7, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 126.2, 74.8, 74.2, 73.6, 73.5, 72.2, 69.6, 56.8, 35.5, 33.8, 32.6, 29.9, 22.4, 14.1. HRMS (ESI-TOF): m/z calculated for C₃₀H₃₅N₃O₃⁺ [M+Na] ⁺ 508.2571, found 508.2570.

Compound 3m was obtained (14.5 mg, 18%) as a yellow oil. $[\alpha]^{25}{}_{D}$ = -11.2 ° (c 0,5 CH₂Cl₂). IR (neat, cm⁻¹): 2926, 2854, 2098, 1456, 1363, 1259, 1089, 1045, 1026, 800, 734.¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.27 (m, 12H), 7.16 (d, *J* = 8.0 Hz, 2H), 4.74 (d, *J* = 3.1 Hz, 1H), 4.70 (d, *J* = 5.2 Hz, 2H), 4.53 (s, 2H), 4.33 (dt, *J* = 5.3, 2.6 Hz, 1H), 3.80 (s, 1H), 3.74 – 3.67 (m, 3H), 2.59 (t, *J* = 7.7 Hz, 2H), 2.37 (q, *J* = 11.8 Hz, 1H), 1.95 (d, *J* = 12.6 Hz, 1H), 1.64 – 1.57 (m, 2H), 1.34 – 1.30 (m, 4H), 0.89 (t, *J* = 6.8 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 142.7, 138.8, 138.1, 137.9, 128.7, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 126.1, 74.8, 74.2, 73.6, 73.5, 72.2, 69.6, 35.8, 32.6, 31.6, 31.3, 22.7, 14.2. HRMS (ESI-TOF): m/z calculated for C₃₁H₃₇N₃O₃⁺ [M+NH₄] ⁺ 517.3173, found 517.3179.

Compound 3n was obtained (20 mg, 34%) as a yellow oil. $[\alpha]^{25}{}_{D} = -11 \circ (c \ 1 \ CH_2Cl_2)$. IR (neat, cm⁻¹): 2960, 2926, 2866, 2094, 1496, 1452, 1363, 1263, 1085, 1066, 1049, 1028.¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 (dd, *J* = 8.5, 1.2 Hz, 1H), 8.57 (d, *J* = 8.1 Hz, 1H), 8.16 – 8.07 (m, 1H), 7.87 – 7.78 (m, 1H), 7.59 – 7.46 (m, 3H), 7.45 – 7.38 (m, 3H), 7.33 – 7.22 (m, 9H), 7.17 (s, 1H), 5.46 (dd, *J* = 11.5, 2.5 Hz, 1H), 4.70 (d, *J* = 7.2 Hz, 2H), 4.50 (s, 2H), 4.47 – 4.38 (m, 1H), 3.87 – 3.72 (m, 4H), 2.57 (q, *J* = 12 Hz, 1H), 2.17 – 2.03 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.1, 137.8, 135.2, 131.6, 131.0, 130.4, 129.7, 129.1, 128.8, 128.6, 128.1, 128.0, 127.9, 126.9, 126.8, 126.7, 126.4, 125.1, 124.4, 123.4, 122.6, 75.3, 75.0, 73.8, 72.3, 71.7, 69.9, 56.9, 31.6. HRMS (ESI-TOF): m/z calculated for C₃₄H₃₁N₃O₃⁺ [M+Na] ⁺ 552.2258, found 552.2257.

Compound 3o was obtained (18 mg, 25%) as a yellow oil. $[\alpha]^{25}_{D} = -6.4 \circ (c \ 0.75 \ CH_2 Cl_2)$. IR (neat, cm⁻¹): 2924, 2854, 2100, 1456, 1261, 1091, 1049, 1026.¹H NMR (400 MHz, Chloroform-d) δ 7.76 (dd, J = 11.4, 7.7 Hz, 2H), 7.69 – 7.58 (m, 1H), 7.54 (d, J = 7.4 Hz, 2H), 7.41 – 7.29 (m, 12H), 4.86 (dd, J = 10.7, 2.9 Hz, 1H), 4.78 – 4.68 (m, 2H), 4.55 (d, J = 2.4 Hz, 2H), 4.41 – 4.35 (m, 1H), 3.89 (s, 1H), 3.82 (t, J = 2.7 Hz, 1H), 3.76 – 3.70 (m, 2H), 3.49 (s, 2H), 2.42 (q, J = 11.7 Hz, 1H), 2.05 – 1.97 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 143.7, 143.6, 141.6, 141.6, 140.3, 138.1, 137.9, 134.3, 128.7, 128.5, 128.1, 128.0, 127.9, 127.8, 126.9, 126.8, 125.2, 125.0, 122.8, 120.1, 119.9, 74.8, 74.4, 73.9, 73.6, 72.2, 69.6, 56.8, 37.1, 32.9, 29.8. HRMS (ESI-TOF): m/z calculated for C₃₃H₃₁N₃O₃⁺ [M+Na]⁺ 540.2258, found 568.2258.

Compound 3p was obtained (18 mg, 25%) as a yellow oil. $[\alpha]^{25}_{D} = -9.6^{\circ}$ (c 0,75 CH₂Cl₂). IR (neat, cm⁻¹): 2924, 2854, 2098, 1456, 1261, 1209, 1091, 1043, 1026.¹H NMR (400 MHz, Chloroform-d) δ 7.74 – 7.67 (m, 2H), 7.48 – 7.42 (m, 3H), 7.42 – 7.38 (m, 2H), 7.38 – 7.29 (m, 10H), 4.86 (dd, J = 10.6, 2.8 Hz, 1H), 4.74 (d, J = 4.1 Hz, 2H), 4.55 (d, J = 1.9 Hz, 2H), 4.43 – 4.33 (m, 1H), 3.83 (s, 1H), 3.79 – 3.68 (m, 3H), 2.42 (q, J = 11.7 Hz, 1H), 2.02 (dt, J = 12.7, 3.5 Hz, 1H), 1.53 – 1.44 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 154.0, 140.8, 139.1, 138.1, 137.9, 134.3, 128.7, 128.6, 128.1, 128.0, 127.9, 127.9, 127.4, 127.3, 127.1, 125.2, 122.7, 120.5, 120.1, 120.0, 74.8, 74.2, 74.0, 73.6, 72.2, 69.6, 56.9, 47.1, 32.9, 29.8, 27.4. HRMS (ESI-TOF): m/z calculated for C₃₅H₃₅N₃O₃⁺ [M+Na]⁺568.2571, found 568.2571.

Compound 3q was obtained (17 mg, 30%) as a yellow oil. $[\alpha]^{25}_{D} = -5.46^{\circ}$ (c 0,75 CH₂Cl₂). IR (neat, cm⁻¹): 2954, 2924, 2854, 2100, 1510, 1456, 1246, 1097, 1028.¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.19 (m, 14H), 7.10 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 4.79 – 4.72 (m, 1H), 4.70 (d, *J* = 3.9 Hz, 2H), 4.52 (d, *J* = 2.7 Hz, 2H), 4.35 – 4.28 (m, 1H), 3.93 (s, 2H), 3.78 (s, 3H), 3.71 – 3.65 (d, *J* = 5.5 Hz, 3H), 2.40 – 2.28 (m, 1H), 1.99 – 1.90 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 141.8, 141.8, 133.3, 130.1,

128.7, 128.7, 128.6, 128.5, 128.5, 128.4, 128.3, 128.1, 128.1, 128.1, 128.0, 127.9, 127.8, 126.7, 123.8, 114.0, 74.7, 74.1, 73.6, 73.5, 72.2, 69.5, 62.4, 57.8, 56.8, 55.4, 41.2, 32.7, 29.8. HRMS (ESI-TOF): m/z calculated for $C_{27}H_{26}F_3N_3O_4^+$ [M+NH₄] + 567.2966, found 567.2972.

Compound 3r was obtained (9.5 mg, 16%) as a yellow oil. $[\alpha]^{25}_{D} = -5.4 \degree$ (c 0,5 CH₂Cl₂). IR (neat, cm⁻¹) : 2926, 2856, 2100, 1735, 1456, 1367, 1230, 1093, 1039.¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.35 (m, 4H), 7.30 – 7.25 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 2H), 4.75 (dd, *J* = 10.1, 3.2 Hz, 1H), 4.71 (d, *J* = 2.1 Hz, 2H), 4.46 – 4.39 (m, 1H), 4.38 – 4.32 (m, 1H), 4.12 (dd, *J* = 11.3, 4.9 Hz, 1H), 3.68 – 3.57 (m, 2H), 2.49 – 2.38 (m, 1H), 2.34 (s, 3H), 2.05 (s, 3H), 2.04 – 1.97(dt, *J* = 12.0, 3.3 Hz, 1H) ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 138.0, 137.8, 137.7, 129.3, 128.6, 128.2, 126.2, 73.9, 72.8, 72.6, 72.1, 61.8, 56.5, 32.3, 21.3, 21.0. HRMS (ESI-TOF): m/z calculated for C₂₂H₂₅N₃O₄⁺ [M+Na]⁺ 418.1737, found 418.1739.

Compound 3s was obtained (11 mg, 15%) as a yellow oil. $[\alpha]^{25}_{D} = -52.6 \circ (c \ 0.5 \ CH_2 Cl_2)$. IR (neat, cm⁻¹): 2926, 2854, 2096, 1456, 1261, 1112, 1089, 1041.¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.24 (m, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 4.77 (dd, *J* = 10.5, 2.9 Hz, 1H), 4.28 – 4.22 (m, 1H), 3.76 (dt, *J* = 11.6, 3.8 Hz, 1H), 3.65 (dd, *J* = 5.3, 2.9 Hz, 2H), 3.51 (s, 4H), 3.39 (s, 3H), 2.33 (s, 3H), 2.28 (ddd, *J* = 12.8, 11.7, 10.5 Hz, 1H), 2.00 – 1.89 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.6, 137.5, 129.2, 126.1, 77.4, 73.7, 73.4, 72.6, 59.5, 58.0, 56.7, 32.7, 21.3. HRMS (ESI-TOF): m/z calculated for C₁₅H₂₁N₃O₄⁺ [M+Na]⁺ 314.1475, found 314.1487.

Compound 3t was obtained (16 mg, 28%) as a yellow oil. $[\alpha]^{25}_{D} = -5.8^{\circ}$ (c 0,5 CH₂Cl₂). IR (neat, cm⁻¹) : 2960, 2927, 2870, 2098, 1730, 1456, 1280, 1261, 1157, 1122, 1095, 1047.¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.15 (m, 7H), 7.07 (d, *J* = 8.0 Hz, 2H), 4.70 – 4.55 (m, 3H), 4.31 (q, *J* = 7.2 Hz, 2H), 4.14 – 4.02 (m, 1H), 3.65 – 3.49 (m, 2H), 2.41 – 2.27 (m, 1H), 2.25 (s, 3H), 1.93 (d, *J* = 12.8 Hz, 1H), 1.09 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 178.3, 138.0, 137.7, 129.2, 128.6, 128.1, 126.2, 74.2, 72.9,

72.6, 72.2, 62.0, 56.5, 32.2, 27.3, 21.3. HRMS (ESI-TOF): m/z calculated for $C_{25}H_{35}N_4O_4^+$ [M+NH₄] ⁺ 455.2653, found 455.5654.

Compound 3u was obtained (12 mg, 16%) as a yellow oil. $[\alpha]^{25}_{D} = -23.2 \circ (c \ 0.5 \ CH_2 Cl_2)$. IR (neat, cm⁻¹): 2924, 2858, 2096, 1508, 1456, 1261, 1089, 1047.¹H NMR (400 MHz, Chloroform-d) δ 7.86 – 7.76 (m, 3H), 7.73 (s, 1H), 7.51 – 7.45 (m, 2H), 7.45 – 7.35 (m, 3H), 7.35 – 7.22 (m, 5H), 7.14 (d, J = 7.8 Hz, 2H), 4.78 – 4.63 (m, 5H), 4.34 (dd, J = 5.3, 2.9 Hz, 1H), 3.80 (s, 1H), 3.71 (d, J = 5.3 Hz, 3H), 2.40 – 2.26 (m, 4H), 1.96 – 1.88 (m, 1H). ¹³C NMR (101 MHz, CDCl3) δ 138.7, 138.1, 137.6, 135.4, 133.4, 133.2, 129.2, 128.6, 128.5, 128.0, 127.9, 127.9, 126.7, 126.4, 126.2, 126.1, 125.7, 74.8, 74.1, 73.7, 73.4, 72.2, 69.5, 56.8, 32.7, 21.3. HRMS (ESI-TOF): m/z calculated for C₃₁H₃₅N₄O₃⁺ [M+NH₄] ⁺ 511.2704, found 511.2706.

Compound **4a** was obtained (31 mg, 61%) as a yellow solid according to the general procedure (C). [α]²⁵_D = - 56.2 ° (c 0,5 CH₂Cl₂). IR (neat, cm⁻¹): 3049, 2925, 2854, 1642, 1454, 1241, 1047. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.74 (s, 1H), 7.34 – 7.14 (m, 12H), 7.12 – 6.95 (m, 4H), 5.43 (dt, J = 13.1, 3.8 Hz, 1H), 4.89 (dd, J = 11.4, 2.5 Hz, 1H), 4.63 – 4.46 (m, 3H), 4.39 (t, J = 5.3 Hz, 1H), 4.10 (d, J = 11.3 Hz, 1H), 3.90 (t, J = 2.0 Hz, 1H), 3.83 (dd, J = 10.2, 5.5 Hz, 1H), 3.73 (dd, J = 10.2, 5.0 Hz, 1H), 2.46 (q, J = 12.2 Hz, 1H), 2.26 (s, 3H), 1.99 (dt, J = 12.2, 3.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 153.2, 151.1, 149.9, 144.6, 141.1, 140.8, 138.3, 137.8, 137.5, 137.1, 129.3, 129.2, 129.2, 128.7, 128.7, 128.6, 128.5, 128.5, 128.4, 128.1, 128.1, 128.0, 127.8, 127.8, 127.0, 126.2, 125.9, 120.2, 117.4, 109.7, 109.6, 109.5, 109.4, 74.9, 74.2, 74.1, 73.7, 72.3, 72.2, 70.0, 57.9, 34.0, 21.1. HRMS (ESI-TOF): m/z calculated for C₃₅H₃₃F₃N₃O₃⁺ [M+H] ⁺ 600.2469, found 600.2475.

Compound **4b** was obtained (21 mg, 59%) as an orange solid according to the general procedure (C). [α]²⁵_D = - 21.6 ° (c 0,5 CH₂Cl₂). IR (neat, cm⁻¹): 3624, 3190, 2927, 2919, 2851, 1403, 1365, 1241, 1218, 1039. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 5.3 Hz, 1H), 7.73 – 7.61 (m, 2H), 7.36 (t, *J* = 3.4 Hz, 2H), 7.26 (s, 10H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.09 (s, 2H), 7.01 – 6.93 (m, 1H), 6.93 – 6.80 (m, 2H), 6.77 – 6.63 (m, 2H), 5.48 (d, *J* = 12.3 Hz, 1H), 5.22 (d, *J* = 2.7 Hz, 1H), 4.94 (d, *J* = 10.0 Hz, 1H), 4.75 – 4.63 (m, 1H), 4.63 – 4.50 (m, 2H), 4.48 – 4.34 (m, 2H), 4.23 – 4.14 (m, 1H), 4.04 – 3.93 (m, 1H), 3.85 (d, *J* = 5.3 Hz, 1H), 3.83 – 3.71 (m, 1H), 2.57 – 2.46 (m, 1H), 2.40 – 2.25 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 160.2, 153.0, 152.0, 148.6, 138.4, 138.0, 137.7, 137.3, 135.4, 130.1, 129.3, 128.8, 128.7, 128.6, 128.1, 127.9, 126.0, 125.3, 124.1, 123.0, 116.7, 109.9, 103.4, 102.2, 77.3, 74.7, 74.4, 73.8, 72.2, 70.1, 62.4, 58.0, 29.8, 21.3. HRMS (ESI-TOF): m/z calculated for C₅₀H₄₄N₃O₈⁺ [M+H] ⁺ 814.3121, found 814.3125.

Compound 4c was obtained (72 mg, 65%) as a yellow oil according to the general procedure (C). $[\alpha]^{25}_{D}$ = - 37.8 ° (c 0,5 CH₂Cl₂). IR (neat, cm⁻¹): 3064, 2926, 2856, 1747, 1716, 1685, 1456, 1367, 1219, 1041.¹H NMR (400 MHz, Chloroform-*d*) δ 8.60 (s, 1H), 8.47 (s, 1H), 8.28 (s, 1H), 7.31 – 7.18 (m, 7H), 7.16 – 7.12 (m, 3H), 7.09 (d, J = 7.9 Hz, 2H), 7.06 – 7.02 (m, 2H), 6.16 (d, J = 5.9 Hz, 1H), 5.45 – 5.28 (m, 3H), 4.85 (d, J = 11.1 Hz, 1H), 4.57 – 4.47 (m, 2H), 4.38 – 4.29 (m, 5H), 4.18 (d, J = 11.8 Hz, 1H), 3.88 (s, 1H), 3.81 – 3.75 (m, 1H), 3.73 – 3.65 (m, 1H), 2.65 – 2.52 (m, 1H), 2.26 (s, 6H), 2.07 (s, 3H), 2.02 (s, 3H). ¹³C NMR

(101 MHz, CDCl3) δ 171.0, 169.8, 169.7, 160.3, 149.6, 138.4, 138.2, 137.9, 137.8, 137.2, 135.4, 129.3, 128.7, 128.4, 128.2, 128.1, 127.9, 127.9, 126.2, 107.5, 87.4, 80.7, 74.6, 74.5, 73.9, 73.7, 73.1, 72.3, 70.9, 70.0, 63.5, 58.1, 33.5, 28.7, 21.3, 21.1, 20.7, 20.5. HRMS (ESI-TOF): m/z calculated for C₄₄H₄₈N₅O₁₂⁺ [M+H]⁺832.3294, found 832.3294.

f) DFT calculations

The calculations were performed using the Gaussian '09 software package, revision D01.⁵ Geometries were optimized with the B3LYP⁶ functional and the 6-31+G(d,p) basis set for H, C, O and N, and LANL2DZ ECP basis set for Pd.

⁵ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

⁶ (a) Becke, A. D. *Phys. Rev.* 1988, *A* 38, 3098. (b) Lee, C., Yang, W. & Parr, R. G. *Phys. Rev. B Condens. Matter Mater. Phys.* 1988, 37, 785. (c) Becke, A. D. *J. Chem. Phys.* 1993, 98, 5648. (d) Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. *J. Phys. Chem.* 1994, 98, 11623.

Ν	0.279213	-0.011317	-1.501719	N	0.195475	0.747017	-1.543631
0	2.589202	-2.321262	1.030648	0	1.452408	-2.485375	0.62832
С	2.182702	-3.348469	0.386658	С	1.22576	-3.649559	0.169399
0	-2.835564	-2.366546	-0.962367	0	-2.11699	-1.857021	-1.264324
0	-4.37405	0.427201	0.782771	0	-4.077598	0.116192	1.063512
0	-2.373295	1.274082	-1.46816	0	-2.689989	1.832538	-1.161934
0	-1.55154	1.382901	0.656248	0	-1.579701	1.844476	0.831967
0	-3.994378	-0.850958	2.616784	0	-3.195378	-1.268136	2.629211
С	-4.206557	0.235066	2.120945	С	-3.707028	-0.209528	2.334676
С	-2.028054	1.918329	-0.319856	С	-2.310035	2.375707	0.025101
С	2.654712	-4.722961	0.755603	С	1.722201	-4.831358	0.963275
Н	2.729636	-5.347281	-0.137668	н	0.955765	-5.10047	1.698809
Н	1.923143	-5.18041	1.431378	н	2.637319	-4.570415	1.497234
Н	3.615874	-4.666378	1.269925	н	1.884564	-5.686674	0.305799
С	-2.352172	3.387856	-0.4342	С	-2.951417	3.732196	0.19655
Н	-1.850711	3.933074	0.36561	н	-2.479441	4.25312	1.029864
Н	-3.435737	3.517242	-0.338399	н	-4.017452	3.597163	0.408694
Н	-2.056173	3.783768	-1.40861	н	-2.87085	4.323564	-0.719199
С	-4.30182	1.535979	2.874879	С	-4.000342	0.915915	3.29226
Н	-5.088455	2.174422	2.465334	н	-4.950676	1.400373	3.055187
Н	-3.346005	2.061449	2.774538	н	-3.202428	1.66087	3.200787
Н	-4.485292	1.329762	3.929719	н	-4.009954	0.529564	4.311827
С	-4.242071	-0.73509	-0.056649	С	-3.778503	-0.847266	0.036203
Н	-4.860412	-0.529695	-0.934038	н	-4.562738	-0.726301	-0.715375
Н	-4.621611	-1.613899	0.467415	н	-3.812567	-1.855821	0.451654
С	-1.527819	-2.87881	-1.23202	С	-0.875011	-1.918495	-1.957438
Н	-1.661452	-3.931424	-1.492995	н	-0.91876	-2.888266	-2.468374
С	-0.873957	-2.12098	-2.389164	С	-0.800812	-0.844554	-3.045192
Н	0.148715	-2.472411	-2.546262	н	0.155296	-0.890173	-3.575596
н	-1.440817	-2.343617	-3.301109	н	-1.602954	-1.020025	-3.774762
С	-0.888107	-0.58806	-2.213996	С	-0.977268	0.524351	-2.393789
н	-0.856358	-0.148957	-3.219666	н	-1.041927	1.324893	-3.142434

С	-2.274954	-0.161353	-1.629552	С	-2.314449	0.506591	-1.611068
Н	-2.981317	-0.348929	-2.446353	н	-3.088374	0.293994	-2.356721
С	-2.790533	-1.030564	-0.462142	С	-2.386202	-0.635851	-0.572076
Н	-2.137869	-0.972306	0.414586	н	-1.650458	-0.49085	0.226146
С	0.587668	1.205203	-1.871945	С	0.727246	1.934928	-1.488111
С	2.137719	1.901417	0.002176	С	2.521595	1.524793	0.257478
С	1.477174	2.130522	-1.259955	С	1.816321	2.365703	-0.685144
С	2.907195	4.089661	0.029498	С	3.873094	3.321098	0.864925
С	2.380058	4.38684	-1.246927	С	3.265283	4.212071	-0.047032
Н	3.446265	4.857585	0.58396	н	4.682883	3.671452	1.50499
Н	2.524967	5.363532	-1.694146	н	3.599398	5.240028	-0.128288
Н	0.056734	1.596971	-2.74402	н	0.281418	2.700089	-2.130831
С	1.644175	3.396584	-1.866312	С	2.231452	3.711761	-0.810357
н	1.168431	3.581417	-2.827249	н	1.713963	4.350361	-1.523363
Ν	2.793735	2.923607	0.638442	Ν	3.534903	2.055683	1.019184
Ν	2.141534	0.713182	0.601647	Ν	2.252378	0.231168	0.441444
С	2.867858	0.582587	1.860322	С	3.122839	-0.484535	1.36752
0	4.024115	0.236647	1.871749	0	4.093312	-1.081345	0.964129
С	2.034782	0.83686	3.09021	С	2.665162	-0.468597	2.803407
Н	1.205634	0.121704	3.124066	н	1.701899	-0.984413	2.872646
Н	2.652268	0.736871	3.984237	н	3.401992	-0.972772	3.431333
н	1.601134	1.840109	3.0368	н	2.525383	0.563107	3.138023
	S T	1	-				

Tem	perature 298.150 l	Kelvin. Pressure	1.00000 Atm.
Z	Zero-point correction	n= tree/Particle)	0.443163
Th	ermal correction to	Energy=	0.476229
Therr	mal correction to Gi	Enthalpy= bbs Free Energy=	0.477173
S	um of electronic and 16	d zero-point Enerç 69.680079	jies= -
S	um of electronic an 16	d thermal Energie 69.647012	- s=
S	um of electronic and 16	d thermal Enthalp 69.646068	ies= -
Su	im of electronic and 16	l thermal Free Ene 69.749768	ergies= -
Н	1.826965	-2.430225	1.924443
Pd	0.935148	-0.925667	-0.649016
0	2.039901	-3.456694	1.647641
N	0.391073	0.909573	-1.361048
0	1.495891	-2.980795	-0.495957
С	1.887455	-3.757531	0.402546
0	-1.746368	-1.69133	-1.374847
ο	-4.081963	0.000343	0.771854
0	-2.615487	1.938397	-1.02476
0	-1.346083	1.932313	0.869777
0	-5.957675	-1.236755	1.024068
С	-5.273869	-0.288181	1.348745
С	-2.202953	2.429984	0.175197
С	2.217253	-5.18823	0.049411
н	2.116633	-5.350938	-1.023507
н	1.542316	-5.857557	0.592359
н	3.235936	-5.419667	0.374284
С	-2.971355	3.687388	0.506606
н	-2.561112	4.133253	1.412704
н	-4.02568	3.438436	0.662404
н	-2.922623	4.399349	-0.322419
С	-5.627936	0.722503	2.412347
н	-5.957214	1.652087	1.934849
н	-4.75934	0.953857	3.03403
н	-6.44257	0.332132	3.022609
С	-3.638595	-0.914124	-0.252506

Н	-4.33039	-0.877215	-1.100646
н	-3.635723	-1.932664	0.142608
С	-0.472624	-1.558477	-1.997455
н	-0.214042	-2.550948	-2.368764
С	-0.525257	-0.466442	-3.06672
н	0.418192	-0.415642	-3.618928
н	-1.339094	-0.644944	-3.783551
С	-0.755592	0.836746	-2.283568
н	-0.787079	1.730126	-2.922012
С	-2.128525	0.694708	-1.587105
н	-2.840674	0.531083	-2.402783
С	-2.215126	-0.539821	-0.657872
Н	-1.605186	-0.384085	0.236564
С	1.131311	1.963432	-1.331609
С	2.862566	1.314404	0.456133
С	2.367398	2.157926	-0.595752
С	4.724555	2.681876	0.705223
С	4.322955	3.568823	-0.299476
Н	5.65753	2.846747	1.242543
н	4.926541	4.431267	-0.560157
н	0.829014	2.810269	-1.958322
С	3.123381	3.292516	-0.940582
н	2.756026	3.953433	-1.722655
N	4.031735	1.604186	1.071141
N	2.184545	0.185267	0.853876
С	2.037232	-0.103985	2.158145
0	1.631738	-1.237835	2.54559
С	2.238799	0.921607	3.259232
Н	1.505632	0.710219	4.040642
н	3.239906	0.806355	3.684245
Н	2.131699	1.950882	2.913864

g) Crystallographic data collection, structure determination and refinement for 3a.

Single crystals of **3a** suitable for X-ray diffraction analysis were obtained after slow evaporation of mixture of saturated deuterated chloroform solution and dichloromethane. A colourless small parallelepipedic crystal was reserved under a binocular and mounted upon a nylon loop to be placed at the intersection of a Mo $K\alpha$ microfocused X-ray beam and the angles of the kappa goniometer that constitute altogether with a HPAD PILATUS3R 200K detector a RIGAKU XtaLabPro diffractometer. The crystal was kept at 123 K using nitrogen cryostream during a complete data collection that optimized the Bijvoet pair measurement. CrysAlisPro 1.171.42.75a^[7] was employed for the data processing, with an empirical absorption correction using a combination of spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm and numerical absorption correction based on gaussian integration over multifaceted crystal models. Structure solution was readily obtained using intrinsic phasing methods (SHELXT program),^[8] and the molecular model was then refined by full-matrix least-squares methods on F² using SHELX-L^[9] satisfactorily. All non-hydrogen atoms of the molecules of interest were subjected to anisotropic refinement. H atoms bound to carbon atoms were identified in Fourier difference maps, nevertheless they were positioned geometrically and refined with U_{iso} set to either $1.2U_{eq}(C)$ or 1.5 for methyl carbons. Regarding the relative stereochemistry of the fourth tolyl substituent to the sugar moiety, the crystal structure brings evidence that its stereodescriptor is S, (see Figure S1) disregarding the unreliable statistics based on Bijvoet pairs analyses at this Mo radiation. Later on further data from another thicker crystal were recorded using a RIGAKU MM007HF copper rotating anode and processed with FS Process option in the CrystalClear 2.0 suite^[10] allowed us to rely on the weak dispersion signal to confirm the absolute configuration if ever needed.^[11,12] The Cremer & Pople puckering parameters^[13] for the chair-form adopted by the sugar ring are as following: Q(2) =0.054(2) Å, Q(3) = 0.545(2) Å, Puckering Amplitude (Q) = 0.548(2) Å, Theta = 5.8(2)°, Phi = 251(2)°. Additionally the disorder of the phenyl ring from the benzyloxy-methyl substituent at C1 was taken into account by splitting it over two sites (with a benzyl flip of ca 54° (ca 49° at rt for the second structure model) relatively to the benzyloxy-methyl mean plane of the major conformer) with occupancy ratio refined at 0.543(5):0457(3) (0.58(2):0.42(2) at room temperature regarding the second model).

Crystal data, data collection and structure refinement details are summarized in Table S1.

CCDC 2225278 (Mo-lowT **3a** model)-2225279(Cu-rT **3a** model) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S1 Ortep view of **3a** showing the displacement ellipsoids at the 50% of probability level, the hydrogen atoms as small spheres with arbitrary radius and the major conformer for clarity regarding the benzyl disorder.

⁷ Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England

⁸ Sheldrick, G. M. Acta Cryst., 2015, **C71**, 3-8.

⁹ Sheldrick, G. M. Acta Cryst., 2015, **A71**, 3-8.

¹⁰ Rigaku (2009) CrystalClear-SM Expert 2.0 r4 Rigaku Corporation, Tokyo, Japan.

¹¹ Hooft, R.W.W., Straver, L.H., Spek, A.L. J. Appl. Cryst., 2008; **41**, 96-103.

¹² Spek, A. L. Acta Cryst. 2009, **D65**, 148-155.

¹³ Cremer, D. & Pople, J.A. J. Amer. Chem. Soc., 1975, **97**, 1354-1358.

Figure S2 side (left) and top (right) views of overlay of CSD^[14] *Refcode* JAQMAT (carbons in yellow) and JAQMEX (carbons in pink) from *Ref*^[15] over the sugar ring of *3a* compound.

Table S1 Crystal data, data collection and structure refinement details for 3a.

Compound			
	За		
	(2 <i>R</i> ,3 <i>S</i> ,4 <i>S</i> ,6 <i>S</i>)-4-azido-3-(benzyloxy)-2- ((benzyloxy)methyl)-6-(<i>p</i> -tolyl)tetrahydro-2 <i>H</i> pyran		
2D-scheme	0 (R) (S) (S) N ₃	RO (^(f)) 1510 (^(S)) (S) 1510 (^{S)}) OH3	
Empirical formula			
	C ₂₇ H ₂₉ N ₃ O ₃ ,		
Formula weight	443	3.53	
Temperature (K)	123(2)	293(2)	
Diffractometer Rigaku [®]		mm007HF, CMF optics,	
	μ S mm003, double- bounce max flux optic,	SuperRapid2 IP	
	HPAD Pilatus 200K	detector	
Wavelength (Å)	0.71073	1.54187	
Crystal system,	Orthorhombic,		
space group	P 2 ₁ 2 ₁ 2 ₁		

¹⁴ Groom, C. R. & Allen, F. H. Angew. Chem. Int. Ed. 2014, **53**, 662

¹⁵ J. Ghouilem, C. Tran, N. Grimblat, P. Retailleau, M. Alami, V. Gandon, S. Messaoudi. ACS Catal. 2021, 11, 1818

Unit cell dimensions	(Å)		
		4.8747(2)	4.9654(3)
		10.5771(4)	10.7233(8)
		44.7202(16)	44.847(3)
Volume (ų)		2305.78(15)	2387.9(3)
Ζ,		4,	4,
Calculated density (Mg	g/m³)	1.278	1.234
Absorption coefficient	(mm ⁻¹)	0.084 0.649	
F(000)		944	944
Crystal size (mm)		0.15 x 0.06 x 0.03	0.55 x 0.13 x 0.07
$\boldsymbol{\theta}$ range for data collec	tion (°)	2.130 to 25.341	7.223 to 65.083
Limiting indices			
		-5 ≤ h ≤ 5,	-5 ≤ h ≤ 5,
		-12 ≤ k ≤ 11,	$-12 \le k \le 12,$
		-53 ≤ l ≤ 53	-52 ≤ l ≤ 52
Reflections collected /	unique	25032 / 4183	21847 / 4045
R(int)		0.0558	0.1014
Completeness to θ =25	.2/65.1° (%)	99.7	99.4
Absorption correction		Semi-empirical	from equivalents
		& Gaussian	-
Max. and min. transmi	ssion	1.000 and 0.812	1.000 and 0.592
Refinement method		Full-matrix least-squares on <i>F</i> ²	
Data / restraints / para	ameters	4181 / 37 / 337	4045 / 183 / 337
Goodness-of-fit on <i>F</i> ²		1.033	0.810
Final R indices	R1	0.0405,	0.0521,
[<i>l</i> >2 <i>σl</i>)]	wR2	0.0896	0.1056
Final R indices	R1	0.0536,	0.0820,
[all]	wR2	0.09448	0.1197
Absolute Structure Parameter	Flack x ^[16]	-	-0.1(3)

¹⁶ Flack, H.D. (1983). Acta Cryst. A39, 876-881.

	Parsons z [17]	-	0.0(2)
	Hooft y [11]	-	0.0(2)
	P2(true)	-	1.000
	P2(false)	-	10 ⁻⁴
	P3(true)	-	0.918
	P3(rac-twin)	-	0.082
	P3(false)	-	9.10 ⁻⁵
Largest Δ peak and hole (e.Å ⁻³)		0.152 and -0.159	0.193 and -0.186
CCDC deposit number		2225278	2225279

¹⁷ Parsons, S., Flack, H.D. & Wagner, T. (2013) Acta Cryst. B69, 249-259.

h) NMR Spectra

100 90 f1 (ppm) . 150 . 130 . 70

$\sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

